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A B S T R A C T

Accurate and efficient prediction of dissolved oxygen from time series data is critical for aquaculture that needs
intelligent management and control. However, data streams of dissolved oxygen that are nonlinear and con-
tinuously generated challenge the existing prediction methods. This paper provides a novel Clustering-based
Softplus Extreme Learning Machine method (CSELM) to accurately and efficiently predict dissolved oxygen
change from time series data. The CSELM adopts k-medoids clustering to group the dataset into different clusters
based on Dynamic Time Warping (DTW) distance, and uses a new Softplus ELM algorithm to discover a common
trend in a cluster of time series pieces (within the same period) and then predict the future trend. The Softplus
ELM improves ELM using a new activation function, Softplus, to solve the nonlinear and continuous problems of
time series data streams and adopting partial least squares (PLS) to avoid the instability of output weight
coefficients. The DTW based clustering in CSELM improves the efficiency while tolerating some data loss and
uncertain outliers of sensor time series. Softplus based on PLS optimizes the performance and increases the
accuracy of ELM. We have demonstrated that CSELM achieves better prediction results than PLS-ELM and ELM
models in terms of accuracy and efficiency in a real-world dissolved oxygen content prediction.

1. Introduction

With the advance of the internet of things (IoT) monitoring systems,
water quality time series data that are continuously generated and daily
accumulated into a large volume provide abundant information to as-
sist prediction. For example, we can learn the temporal trends from the
water quality time series data during different periods of a day and use
these common trends to predict the water quality changes in the near
future. Dissolved oxygen is an important water quality index in in-
tensive aquaculture that determines the growth status of tilapia (Zhu
et al., 2010). Since sensor fault occurs often in reality (Yan et al., 2018),
accurate and efficient prediction of dissolved oxygen from time series
data is critical for water quality management and control, which can
minimize the aquaculture risks and increase the efficiency of fish cul-
ture.

Prediction of water quality change is a complex task, involving
multiple parameters and dynamic delay process (Antanasijević et al.,
2013; Bartzanas et al., 2013) and it is hard to complete efficiently. Also,

the quality of the sensor data that is often reduced by data loss and
uncertain outlier challenges the prediction accuracy (Liu et al., 2013).
We need to develop prediction algorithms that can tolerate some degree
of sensor data quality problems.

Unfortunately, existing water quality prediction methods cannot
resolve the above two problems well. Among them, Artificial
Intelligence (AI) is the most widely used technique for water quality
prediction (Hatzikos et al., 2005; Mahapatra et al., 2011; Faruk, 2010).
The AI-based techniques can be used like a black box, in which the
relationships of data can be obtained without understanding their in-
ternal mechanisms, and they can achieve satisfied speed when applied
to water quality prediction. Support Vector Machine (SVM) and Arti-
ficial Neural Network (ANN) are two typical methods for water quality
prediction. Least squares support vector machine (LS-SVM) prediction
model was used by Tan et al. (2012), and all of its parameters were
determined empirically or randomly. A hybrid particle swarm algo-
rithm optimized least squares support vector regression model was
presented by Liu et al. (2013) to predict dissolved oxygen content. Yu
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et al. (2016) proposed a hybrid RBFNN-IPSO-LSSVM model for water
quality prediction, which utilized the improved Particle Swarm Opti-
mization (IPSO) to determine the optimal parameters for Least Squares
Support Vector Machine (LSSVM). However, SVM and its optimized
models (e.g., genetic algorithms) are sensitive to data loss, time-con-
suming for training (Chen and Yuan, 2014) and not robust in prediction
performances due to the difficulty in choosing suitable kernel functions
for various applications.

ANN is robust and tolerates some faults (Amid and Gundoshmian,
2017). However, it is often overfitted and time-consuming due to the
complexity of network topology and data. More intelligent algorithms
have been developed to overcome ANN's limitations (Shahin, 2016).
Palani et al. (2008) applied the artificial neural network (ANN) models,
such as General regression neural networks (GRNN), multilayer per-
ceptron neural network (MLP) and Back Propagation model (BP) three
hidden layers with different activation functions to predict water
quality parameters using continuous weekly water quality variables.
Faruk (2010) presented a hybrid approach, combining seasonal ARIMA
model and neural network back propagation model to predict the water
quality parameters monthly. The aforementioned ANN models have
numerous drawbacks, which include poor stability, low generalization,
over-fitting (Liu et al., 2013).

ELM was introduced by Huang et al. (2006) as a new neural network
training model. Compared with traditional ANN models, ELM is more
efficient because of its simple network structure (Zhou et al., 2016). In
dealing with nonlinear dynamic system, ELM has been successfully
applied to many fields of prediction and classification because of its
high efficiency and generalization capabilities (Zhao et al., 2013; Junior
and Backes, 2016; Heddam and Kisi, 2017; Yan et al., 2017). In spite of
this, the ELM performance heavily depends on the choice of activation
function. Moreover, the output weight coefficients are instable when
the input nodes are redundant. To design an ELM prediction model in
dissolved oxygen forecasting, one must choose an activation function
and deal with the problem of solving output weight coefficients.

In aquaculture, water quality data streams and meteorological data
have periodic pattern and trend changes. So many models of water

quality evaluation and prediction do not just focus on the improvement
of algorithms, but also explore the patterns of data streams. Wavelet
transform method was utilized by Xu et al. (2013) to capture the feature
of water quality data. Liu et al. (2014) segmented the time series data
collected online to capture the feature of dissolved oxygen data. A novel
statistic variable similarity of days with similar weather was defined by
Huan et al. (2017), which is calculated by the Pearson correlation
coefficient. Based on the similarity of days, monitoring data were
classified into several parts with k-means method to find out the po-
tential relation. However, there is no exact approach to explore the
potential rule of water quality data streams and meteorological data in
day and night.

In this study, a novel Clustering-based Softplus Extreme Learning
Machine method (CSELM) is proposed to accurately and efficiently
predict dissolved oxygen change from time series data. The CSELM
adopts k-medoids clustering to group the dataset into different clusters
based on Dynamic Time Warping (DTW) distance, and utilizes a new
Softplus ELM algorithm to predict the future trend. Traditional ELM and
PLS-ELM models are used as a comparison. The experimental results
demonstrate that the accuracy and efficiency are greatly improved by
CSELM model in a real-world dissolved oxygen prediction.

One advantage of CSELM is that it can tolerate sensor data quality
problems using clustering method and achieve satisfied efficiency and
accuracy. We define a novel variable to measure the similarity by se-
parating the time series into two segments: day-stream and night-
stream. The k-mediods clustering based on DTW distance can discover
the periodic change patterns and trend changes in similar time slots and
divide the dataset into different clusters; and intelligent grouping of
data helps tolerate data loss and greatly improve the prediction accu-
racy and efficiency. Another advantage of CSELM is that the Softplus
ELM improves the prediction accuracy, since it has more optimized
network performance.

The paper is organized as follows: in Section 2, we present the study
area, data acquisition and CSELM prediction model. In Section 3, we
demonstrate the accuracy and efficiency of the forecasting results. In
Section 4, we give concludes from this study.

Fig. 1. The IoT monitoring system for collecting aquaculture water quality time series.
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2. Materials and methods

2.1. Data acquisition

We have used aquaculture water quality time series data collected
by IoT monitoring system as shown in Fig. 1 for experiments. The IoT
monitoring system includes three layers for data collection, data
transport and data application. In the data collection layer, we use
various types of sensors to collect water quality parameters (e.g., dis-
solved oxygen, pH and water temperature) and meteorological para-
meters (e.g., temperature, humidity, atmospheric pressure, carbon di-
oxide, illumination intensity, photosynthetically active radiation,
radiance, wind speed and direction). In the application layer, we pro-
cess the time series data transferred from collection layer via the
transport layer.

All the data were obtained from the Nanquan breeding base located
in Wuxi city, Jiangsu province. The total area of Nanquan tilapia
breeding base was 9.5 acres. The depth of the pond was 1.5m, and the
dissolved oxygen sensor, pH sensor, water temperature sensor were all
placed in 0.8m underwater. These sensors were packed in a device
under a float with a solar panel. The automatic meteorological station
was installed on the shore of the pond. All these data were transferred
to the IoT monitoring system for collecting aquaculture water quality
and meteorological time series.

The water quality and meteorological time series data set for the
experiments includes 4464 data sets (sampled 10min once) from July 1
to July 31, 2016. The first 3780 data sets were used for training, and the
remaining 684 sets were used for testing. Because the water quality in
pond are mainly affected by physical and chemical factors, include
dissolved oxygen, pH and water temperature, humidity, temperature,
atmospheric pressure, carbon dioxide, illumination intensity, photo-
synthetically active radiation, radiance, wind speed and direction.
These eleven influencing factors and the previous DO value form the

input vectors of the forecasting model and the result of this model is the
dissolved oxygen value of the next ten minute, and as shown in Fig. 2.

2.2. Overview of the proposed CSELM prediction model

The characteristics of dissolved oxygen time series data in day and
night are quite different. Moreover, the dissolved oxygen curves have
correlation with meteorological condition. For the purpose of dis-
covering the periodic change patterns and trend changes between dis-
solved oxygen and the aquaculture environment, this paper used the k-
medoids clustering based on DTW distance to divide the data samples
into different clusters with meteorological index. Our CSELM model, as
shown in Fig. 3, is a nonlinear prediction model for predicting the
dissolved oxygen content. Before training the model, we have pre-
processed the original data by improving the “bad data”. Then, k-me-
doids will be used to group data samples into several clusters by time
series similarity measured by DTW. Finally, the prediction models in
these clusters were built to realize the prediction of dissolved oxygen.

Sample preparation: Collect the real time water quality data and
meteorological data by the IoT monitoring system. Input data of
aquaculture environment factors to construct training set and testing
set.

Parameter selection: Select activation function and determine the
algorithm optimal parameters.

Model training and application: Train the model by training sets
(3780 data samples) and obtain the CSELM prediction model. Test the
CSELM model by testing sets (684 data samples). Form a model of input
variables Xi and output estimation value Y. The detail of CSELM mod-
eling is shown as Table 1.

In data preprocessing (in Step 1 of Algorithm 1), we normalize data
and correct or remove anomalous or missing data. We used the factor
analysis method (Ye et al., 2015) to calculate the meteorological index
as reference for repairing anomalous data. Entropy method was used to

Fig. 2. Input-output structure of forecasting model.
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verify whether the calculation of meteorological index is reliable.
Moreover, we used linear interpolation method (Silva et al., 2003) to
restore missing data. And “bad data” is corrected by selecting a data
with the smallest difference to replace the erroneous data, and thus
ensured that the data fluctuate less than 10%. We then focus on pre-
senting the detailed techniques of Steps 2–3 in the following subsec-
tions.

2.3. The k-medoids clustering based on segmentation

Clustering based on reasonable time segmentation ensures the effi-
ciency of the prediction. Clustering plays a crucial role in improving the
efficiency of the CSELM model. Time segmentation can help to find the
periodicity of time series and thus increase the prediction performance.

2.3.1. Segmentation
Given the similar trend existed in cycle time, we subdivided the data

samples into day-stream and night-stream. It is easy to do so. Because
the water quality data is collected in summer in this paper, the sunrise
always occur around 6:00 am, and sunset occurs at about 7:00 pm.
Therefore we set the day data set from 6:00 am to 18:59 pm and night
data set from 7:00 pm to 5:59 am.

Generally the day is longer than night, and the start and end time of
data collection are not at the sunrise and sunset, the lengths of day and
night data sets that need to be analyzed are different. DTW distance can
be effectively and efficiently employed for similarity calculation (Cao
et al., 2016). Because time series data sets vary in length, we utilize the

DTW distance to finish calculation of time series after data preprocess.
To explain how to calculate time series similarity, we illustrate the

calculation process with an example that involves two time series:
R={R1,R2,…,Rm } of length m and T={T1,T2,…,Tn } of length n,
where m may not equate to n. We present the process of using DTW
distance to calculate the similarity of time series as follows. We estab-
lish the distance matrix Dm×n whose element dij=(Ri-Tj)2. The simi-
larity value S can be calculated as follows:

∑= =
⎧
⎨
⎩

⎫
⎬
⎭−

S R T Dist
k

w( , ) min 1

i

k

k
1 (1)

where Dist denotes the DTW distance between R and T,W={w1,w2,
…,wk } denotes the warping path, which is a series of neighboring
elements in the distance matrix and achieves the least cumulative dij
values along the path (Long et al., 2012).

Boundary condition, continuity condition and monotonicity condi-
tion compose the main constraints on the warping path (Berndt and
Clihord, 1994). Boundary refers to the warping paths from (i1, j1)= (1,
1) to (ik, jk)= (m, n). Continuity denotes the steps in the matrix con-
fined to the points with ik-ik-1≤ 1 and jk-jk-1≤ 1. Monotonicity means
that the values of m and n of warping path increase monotonically.

To search the best warping distance, dynamic programming is used
to construct Dist. The cumulative distance matrix is defined as follows.

= + − − − −D i j d Dist i j Dist i j Dist i jist( , ) min( ( 1, ), ( , 1), ( 1, 1))ij

(2)

Fig. 3. The detail process of dissolved oxygen content forecasting.

Table 1
The CSELM prediction model.

Algorithm 1 CSELM Prediction modeling approach

Step 1 Data preprocessing. After data normalization, finish the processes of repairing anomalous data and restoring missing data
Step 2 k-medoids clustering based on DTW time series similarity. Calculate the similarity of time slots based on DTW distance, and finish clustering the data sets based on

similarity
Step 3 CSELM modeling. After clustering, train and build prediction models with CSELM algorithms in each cluster. And then test the built models using different indicators in

testing data sets to finish forecasting
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where, Dist(0,0)= 0, Dist (i,0)= Dist (0,j)=+∞ and Dist (i, j) is the
sum of current dij and the minimum of the cumulative distance of
previous elements.

2.3.2. Clustering
The k-medoids was applied for clustering of the water quality time

series based on time segmentations. Compared with the k-means, k-
medoids has a different mechanism for updating center location of a
cluster. In k-means, the center of a cluster is determined by the mean
location of all the data objects in the cluster, and thus the cluster center
is a virtual data object. In k-medoids, however, it chooses a real data
object as the cluster center which has the minimum sum of distance to
other data objects in the cluster. k-medoids is more reliable and robust
than k-means to hand the outliers (Park and Jun, 2009).

The main idea of k-medoids is presented as follows. First, we set a
value to k, the number of clusters. Second, we select k samples from all
the data as the initial centers of k clusters. Third, we assign each
building sample to the nearest cluster center based on a distance
measure. Fourth, we find the median data object as a new cluster
centre, i.e., the data object with the minimum average distance to the
remaining data objects. Repeat the last two steps until there is no
change in the center of clusters.

In this paper, the initial parameter of k was determined by our ex-
perience on extensive experimental study. We used the cluster validity
index to assess the cluster performance. As the most common cluster
validity index, Davies-Bouldin (DB) index is a function elaborating
compactness in the same class and dispersion in different clusters (Sassi,
2012), and it can be defined as:

=
∑ = ≠

+{ }
V k

k
( )

max
DB

i
k

j j i

S S
d1 ,

i j

ij

(3)

where = ∑ ∥ − ∥∈S x zi n x C i
1
i i

is compactness in cluster Ci,
= ∥ − ∥d z zij i j represents the dispersion between cluster Ci and cluster

Cj. The smaller DB value represents the better clustering result. In this
paper, we set the number of cluster, k, between 2 and 6. The DB values
for different k are given in Table 2.

In Table 2, DB=0.8384 is the smallest value, so k=5 is the best;
and thus the 63 sets of dissolved oxygen time series are divided into 5
clusters. The clustering results are shown in Fig. 4. From Fig. 4, it can be
seen that the data objects in each cluster are concentrated and there is
relatively high dispersion between clusters.

2.4. PLS Softplus ELM (PLS-SELM)

We propose a new PLS-SELM method, which is a multi-input, single
output structure with activation function of Softplus based on PLS. k
ELM sub-models are provided for k clusters, which utilize PLS algorithm
to solve the strong co-linear problem and get output weight of ELM
based on Softplus in each cluster. We can obtain k PLS-SELM models
and compare the performance based on different indicators in various
clusters.

2.4.1. The ELM algorithm
Extreme learning machine (ELM) was proposed by Huang et al.

(2006) for single-hidden layer feed-forward neural network. ELM con-
sists of three layers: input layer, hidden layer and output layer.

Given a data set= (xi, ti), i=1,2,…N, where xi=[xi1,xi2,…,xin]T is
the ith sample, ti=[ti1,ti2,…,tim]T is the actual tag of the ith sample, n is

the dimension of each sample, and m is class number of total samples.
The standard SLFNs with L hidden layer nodes and activation function g
(x) are mathematically modeled as follows:

∑ + = =
=

β g w x b t i N( ) , 1, 2, ...,
j

L

j j i j i
1 (4)

where wj=[wj1,wj2,…,wjn]T is the weight vector connecting the jth

hidden node and the input nodes, βj = [βj1,βj2,…,βjm]T is the weight
vector connecting the jth hidden node and the output nodes, bj re-
presents the bias of the jth hidden layer neuron, and wj∙xi denotes the
inner product of wj and xi. Eq. (4) can be expressed in an explicit matrix
form:

=Hβ T (5)
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where H represents the output matrix

of hidden layer, the jth column of H is the output of jth hidden layer unit,
j=1,2,…, L.

The training of ELM is a process of solving linear least squares be-
tween the hidden layer and output layer. The output weight ̂β is the
unique tunable parameters, the least-square solution can be written as:

̂ = +β H T (6)

where +H denotes the Moore-Penrose inverse of hidden layer output
matrix H, H+=(HTH)-1HT.

2.4.2. Softplus ELM
The activation function has significant influence on forecasting ac-

curacy in the ELM network training. Traditional Sigmoid is a good
threshold function, and it is often used as the activation function in
ELM. The function is defined as follows:

=
+ −g x

e
( ) 1

1 x (7)

Actually, the activation function is not unique (Hornik, 1991).
Rectified Linear Unit Function (ReLU) is a new type of function in deep
learning field, and it can be defined as follows:

=g x x( ) max(0, ) (8)

Compared to the Sigmoid, ReLU is closer to the activation model of
biology, and it has the advantages of high efficiency and effective -
generalization for its simplicity. Nevertheless, the sparse ability of ReLU
is realized by forcing some data to be zero, which will weaken the
forecasting ability. ReLu is a piecewise function, and the derivative of
ReLu is discontinuous. Softplus is an analytic form of smoothing ap-
proximation to ReLU presented by Glorot et al. (2011), and it is defined
as follows:

= +g x e( ) ln(1 )x (9)

The Softplus is a nonlinear, continuous and differentiable function
and closer to the activation model of biology than Sigmoid. In this
paper, for the effective generalization, we introduce the Softplus to the
ELM to replace the Sigmoid called Softplus improved ELM.

2.4.3. PLS-SELM
Hidden output matrix will be strong co-linear if the input nodes are

redundant or the number of hidden layer is more than samples. These
can cause that the inverse matrix of HTH doesn’t exist and the least-
square solution of output weight ̂β is unstable. To avoid these problems

Table 2
DB values change with k.

Cluster number k 2 3 4 5 6

DB 1.2310 0.8774 0.9420 0.8384 0.8945
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in ELM training, PLS was embedded into the Softplus ELM model, and
PLS will replace the least-square method to solve the strong co-linear of
hidden output matrix through extracting the orthogonal variable in
hidden layer. The schematic diagram of PLS-SELM is shown in Fig. 5.

PLS can build the linear relation between the output YN×M and
hidden layer nodes output matrix HN×L during PLS-IELM modeling as
follows.

= +Y Hβ ePLS (10)

where βPLS and e are the output weight coefficient matrix and noise in
the PLS-SELM model respectively. The bilinear decomposition between
output matrix H of hidden layer nodes and output matrix Y can be
described as follows:

= + = ∑ +

= + = ∑ +

⎫
⎬
⎭

=

=

H TP E t p E

Y UQ F u q F

,

.
k
h

k k

k
h

k k

T
1

T

T
1

T
(11)

where = ⋯ ∈ ×T t t R[ , , ]h
N h

1 and = ⋯ ∈ ×U u u R[ , , ]h
N h

1 denote the score
matrixes of hidden layer and output layer respectively.

= ⋯ ∈ ×P p p R[ , , ]h
L h

1 and = ⋯ ∈ ×Q q q R[ , , ]h
m h

1 denote the load ma-
trixes of hidden layer and output layer respectively. h is the number of
latent variables retained in the PLS model. EN×L and FN×m are residual
error matrixes of hidden layer and output layer. The internal model
between hidden layer and output layer is a linear regression model. It is
established based on each latent variables uk and tk as follows:

= = ⋯u t b k h; 1, , .k k k (12)

where bk=(tkTtk)-1tkTuk, bk is the least squares coefficient of latent
variables. B= diag[bk], the diagonal element of B is scalar bk. The in-
ternal model can be respresented in matrix form as:

=U TB (13)

Then, the parameters of model between hidden layer and output
layer can be solved by nonlinear iterative PLS algarithm (NIPALS). The

Fig. 4. The clustering results.

Fig. 5. The Schematic diagram of PLS-SELM.
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input-output relation between hidden layer and output layer can be
described as →H Y T W P B Q{ , } { , , , , }

PLS
, where W is the input weights. If

the first h latent variables are retained, the output weights ̂βPLS in PLS-
SELM model can be calculated as:

̂ = −β W P W BQ( )PLS
T 1 T (14)

For each test time series data, we find out the cluster it belongs to
and then compute the forecasting results by Eq. (10).

3. Results and discussions

3.1. Parameter settings of algorithm

In this experiment, all data (4464 data sets) are grouped into 31
streams (each for a day). We segment each stream into two sub pieces:
day-stream and night-stream, since the monitoring data are changed
periodically in day and night; so, totally 63 time series data sets are
used. In ELM, the numbers of hidden nodes L in different clusters are
determined by using trial and error method. And the number of the
hidden nodes in the five clusters are L2= 50, L3= 22, L4= 16, L5= 29
respectively, as shown in Table 3. In this experiment, the partial least
squares algorithm is utilized to get output weight of ELM. In PLS, the
number of latent variables h also need to be selected by using the cross-
validation method and the performance indictor of Root Mean Square
Error (RMSE). The minimum RMSE value occurred at latent variables
h= 5. All of the experiments are implemented by MATLAB and run on
a PC with 3.4 GHz Core (TM) processor, 4.0G memory, and Microsoft
Windows 7.

3.2. Results of k-medoids clustering

As shown in Table 2, the optimal number of clusters is 5 for the 63
data sets. Each cluster contains a CSELM prediction sub-model. Table 3
compares the neural network structures and RMSE values of the five
clusters. Each cluster has different structure. It shows that no testing
data point is assigned to the first cluster. And the biggest cluster con-
tains 2418 data points and the smallest cluster contains the only 228
data points. The second cluster has 50 (the greatest number of) hidden
layers with the structure of 11-50-1. We can find that all the data points
in the second cluster are night-streams, and day-streams are clustered
into the other four clusters. So, the difference of data points in day is
greater than at night. In view of RMSE value in these clusters, the
greater the total data point, the greater the RMSE value.

3.3. Model performance evaluation

3.3.1. Evaluation metrics
We evaluate the prediction accuracy using the four metrics: RMSE,

Mean Absolute Percentage Error (MAPE), Nash Sutcliffe efficiency
Coefficient (NSC) (Benyahya et al., 2007) and Mean Absolute Error
(MAE), and also evaluate the Run Time T. These metrics are computed
by Eqs. (15)–(18).
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where N is the total number of actual points in each data set, yi is the
original and ̂yi is the prediction value. ȳ and ∼y represent the average of
observed value and the average of prediction values respectively. The
higher NSC value, shorter T value, lower MAPE and MAE values in-
dicate more precise model.

3.3.2. The best proposed method
We evaluate the two critical components (clustering and Softplus) of

CSELM by adding them to improve ELM and PLS-ELM separately; so we
propose two more new methods: SELM (improving ELM by Softplus and
PLS) and CELM (improving PLS-ELM by clustering input).

Fig. 6 shows the average precision and time of prediction models.
The overall trend is that CSELM exceeds both SELM and CELM in terms
of precision (RMSE, MAPE and MAE) and time, though the NSC value of
CSELM is only slightly higher than that of SELM but obviously higher
than that of CELM. We can see that the average run time of CSELM is far
shorter than SELM; this demonstrates that clustering of raw data using
DTW greatly improve the efficiency. We also can see that the average
run time of CSELM is shorter than CELM; this means that Softplus also
contribute to the efficiency improvement. However, CELM achieves
worse precision (RMSE, MAPE and MAE); this demonstrate that Soft-
plus in both CSELM and SELM improves the accuracy. Moreover, the
best NSC value of CSELM among these prediction methods indicates
that the combination of the clustering operation, PLS and Softplus can
improve the performance of dissolved oxygen prediction well.

3.3.3. Comparison with existing methods
For further analyze the applicability of CSELM, we use the trained

models to predict the dissolved oxygen content in five days and com-
pare CSELM with two counterpart methods (PLS-ELM and ELM) as
shown in Fig. 7 (a-e). In these figures, the x coordinate denotes the time
in a day and y coordinate represents the dissolved oxygen content.

We can find a common trend in Fig. 7 (a-e) that all models can
complete the dissolved oxygen prediction well, but vary in prediction
effect. The forecasting curve of CSELM is closer to the real data than
those curves of PLS-ELM and ELM. This demonstrates that CSELM

Table 3
Neural network structures in five clusters.

Serial
number of
clusters

Total
data
points

Training
data points

Testing
data points

Structure of
neural network

RMSE

1 528 528 0 – –
2 2418 2028 390 11–50-1 0.466
3 462 396 66 11–22-1 0.3294
4 228 198 30 11–16-1 0.2493
5 828 630 198 11–29-1 0.335

Fig. 6. Average precision and time.
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achieves the best forecasting results by recognizing the periodic change
patterns and trend changes of time series data. However, the predicting
results of dissolved oxygen content changed sharply on the peak of the
first day in Fig. 7 (a), on the peak of the second day in Fig. 7 (b) and the
valley of the fifth day in Fig. 7 (e). Through careful observation and
analysis, we have found that there are some fluctuations in the Fig. 7 (a-
e) occurred in half an hour before and after 6o'clock am or 7o'clock pm.
The two points are not just the sunrise and sunset, but also the critical
points to divide the similar time slots in Section 2.3. Due to the time
differences of every sunrise and sunset, the start time and end time of
photosynthetic algae are different. Thus, the forecasting based on si-
milar time slot had small errors when dissolved oxygen changed
sharply.

We also provide some numeric predicted results of examples in

Table 4 during twenty minutes before and after 7 pm on the first day
and twenty minutes before and after 6 am on the fifth day. CSELM
produced lower average absolute percentage error (APE) than PLS-ELM
and ELM on the first and the fifth days. The average APE values for
CSELM, PLS-ELM and ELM were 0.3294, 1.3365 and 0.7295 during
twenty minutes before and after 7 pm on the first day. Meanwhile, the
average APE values for CSELM, PLS-ELM and ELM modeling ap-
proaches were 0.2034, 0.5649 and 1.0718 during twenty minutes be-
fore and after 6 am on the fifth day. It is obviously that, there are big
fluctuations in these positions, but CSELM model can achieve better
forecasting results than PLS-ELM and ELM modeling approaches.

In addition to the best prediction effectiveness of CSELM as shown
in Fig. 7, we give the numeric precision (RMSE, MAPE, MAE, NSC)
values in Table 5. The average RMSE of the proposed CSELM is the best

(a) The forecasting results on the first day          (b) The forecasting results on the second day 

(c) The forecasting results on the third day           (d) The forecasting results on the fourth day 

(e) The forecasting results on the fifth day. 
Fig. 7. The forecasting results of dissolved oxygen content by CSELM.
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(0.3449), compared to PLS-ELM (0.681) and ELM (0.7573). Also, the
average MAPE of the proposed CSELM is improved 44.5% compared to
PLS-ELM and improved 54.93% compared to ELM. Similarly, the
average MAE value of our CSELM is improved 47.03% of PLS-ELM and
54.62% of ELM. It is obvious that the proposed CSELM model outper-
forms the two counterparts in terms of all precision metrics for dis-
solved oxygen prediction. Meanwhile the CSELM model produced
better NSC value (0.9392) in comparison to the two counterparts with
values of 0.8453 and 0.8087. These data demonstrate the good per-
formance of CSELM prediction model. CSELM also significantly in-
creases the efficiency, compared to both PLS-ELM and ELM. The run
time of ELM is nearly double of CSELM, while the run time of PLS-ELM
is almost three times of CSELM.

In summary, our proposed CSELM is obviously the best model for
predicting the water quality changes in terms of accuracy and effi-
ciency, compared to the two counterparts (PLS-ELM and ELM).
Particularly, CSELM is able to discover the periodic change patterns and
trend changes of water quality and meteorological time series data (in
aquaculture) and thus provide better prediction results.

4. Conclusions

We proposed prediction model CSELM for forecasting dissolved
oxygen content change from time series data, which comprises two new
techniques: the k-medoids clustering based on DTW for both accuracy
and efficiency by intelligently grouping input data based on their
common trends, and Softplus activation function based on PLS for im-
proving ELM. The experimental study shows that CSELM performs
better than two counterparts (PLS-ELM and ELM) models in terms of
RMSE, MAPE, MAE, NSC, and Time. CSELM provided a new forecasting
method for various-length time slots of day or night and its effective-
ness was verified in a real-world application for predicting dissolved
oxygen to reduce and avoid unnecessary losses caused by hypoxia.
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