
Information Sciences 553 (2021) 49–65
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/ locate/ ins
A hypergrid based adaptive learning method for detecting data
faults in wireless sensor networks
https://doi.org/10.1016/j.ins.2020.12.011
0020-0255/� 2020 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail address: ghli@jiangnan.edu.cn (G. Li).
Lingqiang Chen a, Guanghui Li a,⇑, Guangyan Huang b

a School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
b School of Information Technology, Deakin University, Melbourne 3125, Australia
a r t i c l e i n f o

Article history:
Received 2 June 2020
Received in revised form 27 October 2020
Accepted 7 December 2020
Available online 16 December 2020

Keywords:
Wireless sensor networks
Data faults/anomalies
Hypergrid
Lazy learning
Continuous learning
a b s t r a c t

In wireless sensor networks (WSNs), data anomalies/faults often occur due to the limited
resources and unreliability of sensor nodes. Many traditional anomaly detection methods
are designed in a batch manner, but for the nature of streaming data in WSNs, continuous
anomaly detection method is preferred. Existing methods often detect only a single type of
faults but cannot detect multiple types of faults that actually are more common in the sen-
sor data. Therefore, this paper provides a Hypergrid based Adaptive Detection of Faults
(HADF) method, which adopts hypergrid and statistical analysis to recognize three types
of faults in the sensor data, including outliers, stuck-at faults, and noisy faults. HADF is a
distributed method running on sensor nodes, which can reduce the influence of concept
drift in unstable streaming data through combining both lazy leaning and continuous
learning to adaptively update its normal profile. In the experimental study, we have man-
ually inserted different types of faults into two real-world datasets, and the results demon-
strate that HADF achieves higher accuracy with reasonable efficiency for detecting the data
faults than four counterpart methods.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid development of wireless sensor network technologies, Internet of Things (IoT) applications have covered a
variety of fields [32], such as industrial control [3,13], forest environmental monitoring [20,22] and ocean environment mon-
itoring [9], network security monitoring, healthcare and smart medical [2,29], and precision agriculture [1,37]. According to
Cisco statistics, there will be 14.7 billion connected devices in IoT by 2023 [8]. Each sensor network application may contain
hundreds even thousands of devices that continuously generate data streams and accumulate them into a huge amount.

However, sensor nodes may generate abnormal data due to the limitation of the node resources and complex deployment
environment. Three typical categories of data faults are stuck-at faults, noisy faults, and outliers [23]. First, when sensor
nodes are in low power or out of power, they will lose the capability of normal monitoring or data gathering, and thus
the output values of the sensors will keep abnormally constant; we call them stuck-at faults. Second, sensors may produce
intermittent or persistent noisy faults due to electromagnetic interference. Third, sensors often sample data with sharp
changes, called outliers. Also, because of their short duration, it is difficult to pinpoint the cause. The poor-quality data with
the above mentioned faults will increase extra communication overhead to the sensor network, and even affect decision

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2020.12.011&domain=pdf
https://doi.org/10.1016/j.ins.2020.12.011
mailto:ghli@jiangnan.edu.cn
https://doi.org/10.1016/j.ins.2020.12.011
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
making for those data-based applications. For example, stuck-at faults will result in a poor performance for the time series
prediction methods. Thus, effective fault detection is critical for improving the quality of sensor data and monitoring.

In recent years, diverse anomaly detection methods using different principles have been developed for WSNs, such as
statistics-based, density-based, distance-based, cluster-based, learning-based methods [6], and trust based methods
[15,19,27]. Many detection methods often work under different assumptions or definitions of the normal data and may
be effective for detecting one type of data faults. According to the statistical result in [32], the outlier is the most commonly
addressed fault type in literature, and some papers also focus on noisy or stuck-at faults.

In this paper, we propose an effective Hypergrid based Adaptive Detection of Faults (HADF) method for detecting the
abovementioned three typical types of sensor data faults. In HADF method, two different detectors (hypergrid based and sta-
tistical analysis based detectors) are used for detecting multiple types of faults. Also, HADF adopts both lazy learning and
continuous learning methods. Moreover, we redesign a robust L1 detection region (RDR) by adding a transition region to
the traditional L1 detection region (L1-DR).

HADF applies a hypergrid structure to obtain the normal profile of recent data. The existing methods most related to ours
are hypergrid based detection methods, such as HGDB and HypGridE [10,35]. HGDB is a basic online hypergrid based method
and updates its NP in a lazy learning manner. HypGridE is an ensemble method that forms a strong detector by combining
several HGDB detectors. Our scheme is different from the above two methods in three aspects:

� HADF combines not only the basic HGDB detector but also the statistical analysis based detector.
� A novel L1 detection region is proposed, which is different from the improved L1 detection region in [10,35].
� HADF updates its NP in two manners: lazy learning and continuous learning.

Thus, this paper has the following three contributions. In each contribution we also point out the advantage of our pro-
posed scheme.

� We propose an effective method for detecting multiple types of sensor data faults (i.e., outliers, stuck-at faults, and noisy
faults). Two different detectors applied in our schemes improve the accuracy for detecting various types of faults.

� We adopt both lazy learning and continuous learning methods to increase the adaptability of the normal profile for mit-
igating concept drift. It can not only improve the detection rate but also reduce the communication overhead caused by
frequent updates.

� We provide a robust L1 detection region for improving the accuracy of existing improved L1-DR in the proposed hyper-
grid based method. Like other improved L1-DR, RDR has lower computational complexity than L1-DR. Besides, HADF
applied RDR owns higher robustness to the data at the center or boundary than those using other improved L1-DR in
[10,35].

The rest of this paper is structured as follows. In Section 2, the related work is reviewed and summarized. The important
preliminaries are presented in Section 3. We detail the proposed HADF method in Section 4. Section 5 demonstrates the pro-
posed method in extensive experiments. Finally, we conclude the paper in Section 6.
2. Related work

Many existing methods have already been used to detect data faults in wireless sensor networks [7,24,25,33,38]. These
methods can be divided into two types: centralized and distributed, based on their architectures [5].

The centralized method is usually performed on the base station with all data collected from sensor nodes. Base stations
generally have abundant resources to store large amounts of historical data to train complex models. In [12], a centralized
anomaly detection method is applied to the medical application. The physiological parameters of the monitoring object are
collected by the remote nodes and uploaded to the base station. Subsequently, a sequential minimum optimization regres-
sion method is applied to predict current data using historical data and marks the anomaly data by comparing the difference
between predicted data and sampled data with a predefined threshold. Many other common anomaly detection algorithms,
such as CNN [34], LSTM [16], auto-encoder [11], can also be designed as the centralized methods for WSNs. However, the
centralized methods often result in high communication cost, since they need to obtain all sensor data and additional infor-
mation, such as the source of the data, that may be required to pinpoint the cause of the fault. In sensor networks, the com-
munication energy is much higher than that of computing. Thus, the centralized approaches may not be suitable for
detecting faults occurring at the node.

Fortunately, many distributed methods have been used to overcome the limitations of the centralized methods. Here,
tasks are divided into subtasks among nodes. The communication overhead of networks can be reduced, since the sensor
nodes (SNs) only need to transfer processed data or model parameters to their neighbors or cluster head (CH). A distributed
histogram-based method is presented in [36]. Each SN sets the local histogram with the global value range. Then, CH forms a
histogram of global data by merging all the local histograms from SNs. After getting the global histogram parameters from
CH, SN performs anomaly detection locally. Similar to the method proposed in [36], a distributed method in [26] is also
divided into two stages: training stage and test stage. In the training stage, SN gathers the normal observations to form a
50

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
local normal model (LNM) and sends it to the CH for constructing the global normal model (GNM). In the test stage, SN tests
sampled measurements using the GNM. Another version of distributed detection methods is that SNs form detection models
by using the parameters from their neighbors without the coordination of CH. In [39], an ellipsoidal support vector machine
(SVM) is used to detect outliers, which reduces the computational overhead by fixing the center of hyper-ellipsoid at the
origin. Each node trains its local hyper-ellipsoid SVM and shares the model parameters with neighbor nodes. Consequently,
nodes form a global model using the shared parameters and detect the data faults using both local and global models.

HGDB [35] and HypGridE [10] are also designed in a distributed manner. HGDB establishes a hypergrid structure in fea-
ture space that consists of hypercubes with fixed size and maps training data onto the structure to record the distribution of
data. All SNs in one cluster share their local distribution of data with CH so that CH can draw the global normal profile (NP).
Sequentially, SN performs online anomaly detection locally with the NP and the threshold received from CH. To meet the
dynamic change of surroundings, HGDB relearns its NP periodically. HypGridE constructs a strong detector by using several
basic HGDB models. Moreover, HypGridE decreases the number of searching adjacent hypercubes using an improved L1
detection region that considers the data mapped to the boundary.

However, the aforementioned distributed methods are relatively simple because of their limited training samples. There-
fore, when the concept drift occurs, the distribution of data changes and causes the failure of the NP (i.e., the NP is out of
date). To solve this problem, HADF adopts the combination of continuous learning and lazy learning to finely tune the NP
in each SN. In this way, we can not only reduce the communication overhead of frequent updates due to the NP failure
but also improve the adaptability of NP.

3. Preliminaries

In this section, we introduce preliminary knowledge, including the types of faults and the hypergrid based anomaly
detection method. All the abbreviated symbols are listed in Table 1.

3.1. Anomalies in WSN streaming data

In the real-world applications, the sensor nodes cannot avoid collecting erroneous data. Anomalies/data faults are clas-
sified into three categories mentioned before: outlier faults, stuck-at faults and noisy faults [23], as shown in Fig. 1. Due
to the lack of the ground truth of sensor data and the short duration of outlier fault, we cannot analyze the cause accurately.
According to [30], lack of ground-truth values, the fault refers to a deviation from the expected value. This kind of anomaly
was first investigated in [4], as an additive outlier for time series data. In [28], it was pointed out that additive outliers are
easy to be identified, because these outliers do not influence other data in context. When the node is affected by some elec-
tromagnetic interference or other factors, the collected data will be contaminated by noise. Additionally, when the remaining
energy of nodes fails to support the normal operation of the sensor, or the sensor hardware fails, it will collect continuous
constant values, and these data are different from the normal data. The specific definitions of anomalies in streaming data are
as follows:

Outlier Faults: Outlier faults are those points that are significantly different from other data sampled in the near time.
Formally, outlier fault can be expressed as:
y tð Þ0 ¼ y tð Þ þ D; ð1Þ

where y tð Þ is the true value collected at time t;D is an error value, and y tð Þ0 is the abnormal data.

Stuck-at Faults: A node collects data that remain at the constant value g for a long time. Formally, Stuck-at faults can be
expressed as Eq. 2, where x is a timestamp x 2 t; t þ n½ �ð Þ, and stuck-at faults last for n timestamps.
y xð Þ0 ¼ g jx 2 t; t þ n½ �� � ð2Þ

Noisy Faults: When the data are contaminated by noise, the variance of the data will increase. In [23], it assumes that

noisy data obeys a new normal distribution, different from that of normal data. Let l and r be the mean and standard devi-
ation of normal data. We set the abnormal data distribution by adding or multiplying a small constant value c;rð Þ to the
original mean and variance, where N l;rð Þ is a random normal distribution function. Formally, noisy fault can be expressed
as:
Table 1
Description of the abbreviated symbols.

Abbreviations/symbols Description

HADF Hypergrid based adaptive detection of faults method
RDR Robust L1 detection region
CH Cluster head node
SN Sensor node
NP Global normal profile in one cluster that records all data distribution in hypergrid structure
NP* Local normal profile that records the distribution of data of each SN in hypergrid structure

51

Fig. 1. Three fault types in sensor readings.

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
y tð Þ0 � N lþ c; k � rð Þ: ð3Þ
3.2. Hypergrid based anomaly detection method

Hypergrid structure composes continuous hypercubes. The side length and diagonal length of the hypercube are h and d,
respectively, where d ¼ h

ffiffiffi
q

p
, and q is the dimensions of feature space. Hypergrid based algorithm is a distance-based method

that detects the anomalies according to the data size in the detection region of test data. If the data size is larger than the
threshold, the test data is marked as normal, otherwise not. Therefore, before detecting, the distribution of data should be
obtained in the learning procedure. A distributed method is used to get a global normal profile [10,35] as follows:

� SN in one cluster shares the summary of its local data (like linear sum, linear sum of squares, maximum and minimum
values) with its CH.

� CH summaries the global data information (like mean, standard deviation, global minimum) and forms a new hypergrid
structure.

� SN normalizes its local data and maps them onto the hypergrid structure to form a local normal profile NP�, which con-
tains each non-repeating position of the non-empty hypercube and corresponding data size in them. Besides, SN esti-
mates a local threshold K� using its local data.

� CH merges all NP� and K� from SNs, and forms the global NP and the threshold K.
� Finally, SN performs online detection locally, according to NP and K received from CH.

The memory size of NP is increased by the number of attributes in each data vector. Therefore, an encoding technique is
utilized to compress the position of each data into a fixed-length sequence of bits, irrespective of its dimension [35]. For con-
venience, the test data discussed below are all normalized.

The detection process of hypergrid based methods can be roughly divided into two parts: the mapping process and the
counting process. The mapping process is performed as below. If there is a multi-dementional data object xt ¼ xt1 ; . . . ; xtq

� �
sampled at time t, where xt is a q-dimensional vector, then xt can be mapped onto a hypercube Cu1 ;...;uq according to Eq. (4).
The coefficient, c, is a constant value that is set as c > jmin j, by which the entire feature space will be shifted into positive
coordinate spaces, and the positive integers, u1; . . . ;uq, denote the indices of a hypercube.
ui ¼ xi þ c
h

j k
; i ¼ 1; . . . ; q: ð4Þ
Before counting the data size in the neighbor of the test sample, we introduce the concept of the detection region.
In hypergrid structure, there are two types of detection regions (DR), called Layer-1 neighbors of a hypercube (L1) and

Layer-2 neighbors of a hypercube (L2). L1 and L2 of Cu1 ;...;uq can be represented as Eqs. (5) and (6), respectively.
L1 Cu1 ;...;uq

� � ¼ Cd1 ;...;dq jd ¼ u� 1; Cd1 ;...;dq – Cu1 ;...;uq

� � ð5Þ

L2 Cu1 ;...;uq

� � ¼ fCd1 ;...;dq jd ¼ u� 2; Cd1 ;...;dq – Cu1 ;...;uq ; Cd1 ;...;dq R L1 Cu1 ;...;uq

� �g: ð6Þ

Fig. 2 shows a 2D example of hypergrid structure. Given a threshold, K, of the data size, we can get the following property

[17].

Property 1. If there are less than K data in Cu1 ;...;uq [L1 [L2, all test data in Cu1 ;...;uq are anomalous.
52

Fig. 2. A 2D example of hypergrid structure.

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
The data size in L1 and L2 of mapping hypercube of test data would be calculated by the hypergrid based method. Accord-
ing to Property 1, counting will stop for a certain hypercube when the cumulative number is larger than the threshold, K, and
the test data is verified as normal. Nevertheless, the size of the detection region of hypercube increases exponentially with
the number of attributes increases. A simplified property for anomaly detection is proposed in [35] to reduce the computa-
tional complexity.

Property 2. If there are less than K data in Cu1 ;...uq [L1, all test data in Cu1 ;...;uq is anomalous.
In [35], a substituted detection region is applied to further decrease the detection region. We assume that a test data

object x ¼ x1; . . . ; xq
� �

is mapped into hypercube Cu1 ;...;uq , its substituted detection region R can be represented as follows:
R xð Þ ¼ fCd1 ;...;dq jdi ¼ ui; ui þ ei; i ¼ 1; . . . ; qg

ei ¼ þ1; xi � xib c > 0:5
�1; xi � xib c 6 0:5

	 ð7Þ
Another version of the improved L1 detection region is proposed in [10]. Considering the data mapped onto the boundary,
the new detection region R is defined as follows:
R xð Þ ¼ fCdl ;...;dq jdi ¼ ui; ui þ ei; i ¼ 1; . . . ; qg

ei ¼
þ1; xi � xib c > 0:5
�1; xi � xib c < 0:5
�1;þ1f g; xi � xib c ¼ 0:5

8><>: ð8Þ
In practice, it is hard to confirm a proper substituted DR [35] of data mapped in the transition region, and the number of
data points mapped to the center or edge of the hypercube is significantly less than other regions [10]. Therefore, we redefine
the L1-detection region (L1-DR) by a more robust one (Abbrev. RDR). The detailed RDR of x ¼ x1; . . . ; xq

� �
that maps into a

hypercube Cu1 ;...;uq can be represented as Eq. (9), where w is the width of the transition region, and w 2 0;1½ �.

RDR xð Þ ¼ Cd1 ;...;dq jdi ¼ ui;ui þ ei; i ¼ 1; . . . ; q

� �
ei ¼

þ1; xi � xib c > 0:5þw=2
�1; xi � xib c < 0:5�w=2:

�1;þ1f g; 0:5�w=2 6 xi � xib c 6 0:5þw=2

8><>: ð9Þ
According to Eq. (9), it is obvious that the size of RDR is influenced by w. Without loss of generality, we assume that the
distribution density of data points in the hypercube is the same. Let the side length of hypercube be 1, and its dimension be q.
The volume of the hypercube is derived as follows:
53

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
V ¼ 2 0:5�w=2ð Þ þw½ �q ¼ 1

¼
Xq

k¼0

Ck
q 2 0:5�w=2ð Þ½ �kwq�k ð10Þ
According to Eq. (9–10), the average size of RDR is derived as follows:
E q;wð Þ ¼
Xq

k¼0

Ck
q 2 0:5�w=2ð Þ � 2½ �k w � 3ð Þq�k ð11Þ

E 3;wð Þ ¼
X3
k¼0

Ck
3 2 0:5�w=2ð Þ � 2½ �k w � 3ð Þ3�k

¼ w3 þ 6w2 þ 12wþ 8

ð12Þ
4. The hypergrid based adaptive detection of faults method

In this section, we first introduce the overview of our scheme and then detail HADF in three parts: distributed learning
process, detection/continuous learning process, and complexity analysis.

In WSNs, many sensor nodes are deployed in the real environment and always formed cluster structures [31]. In this
study, we focus on applying anomaly detection on sensor nodes in each cluster. Consider a hierarchical wireless sensor net-
work deployed in a geographic area of interest, we give a background diagram of HADF as shown in Fig. 4. The WSN consists
Fig. 4. Overview of HADF.

Fig. 3. Average size of RDR of the 3D hypergrid structure.

54

Fig. 5. Workflow of HADF.

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
of one sink node and several clusters. In each cluster, there are one CH and several SNs. HADF can be deployed in each cluster
with the coordination of CH and SNs as shown in Fig. 5. First, CH and SNs cooperate to complete the distributed learning
process, i.e., the lazy learning process within the cluster. Then, SNs perform hypergrid and statistical analysis based detectors
on periodically sampled data using the updated NP. After detection, SNs apply continuous learning to add the information of
new data into NP. Besides, normal data will be stored with probability in the local memory. SNs within one cluster repeat
step 2 to step 4 until one of SNs needs to update NP and sends the update request to the CH. Finally, a new round of the
distributed learning process begins. To release the impact of the data loss on the update, we can apply two underlying mech-
anisms: data recollection and packet retransmission mechanisms.
4.1. Distributed learning process

The distributed learning process of HADF in SN will be triggered when one of the following conditions is satisfied.

� The amount of data stored locally exceeds the predefined value.
� Data in the local buffer are all replaced by new data.

During the distributed learning process, some basic parameters of hypergrid structure are updated, among which the side
length, h, and the threshold, K, determine the performance sensitively. However, it is hard to obtain an optimal h, due to lack
of prior knowledge. In [35], an estimation interval of h is proposed by minimizing the mean integrated squared error of the
detection region. The interval of h can be calculated by Eq. (13), where q and n are the dimensions of feature space and map-
ping data size, respectively.
h 2 3
8

 �q 6q
Z

 � 1
qþ2

;
1
2

 �q 6q
Z

 � 1
q�2

" #
ð13Þ
Z ¼ n
Xq

i¼1

2qþ1p
q
2

�
�1
ð14Þ
The threshold, K, is a standard to describe whether a test data is in a dense region or sparse. If data size N in the RDR of test
data is less than K, the data is abnormal. In [35], K can be approximately estimated by calculating the mean data size in the
detection region of training data. Let RDR xið Þj j be the number of data in the RDR of xi; the mean data size can be estimated as
Eq. (15). The rate, r, is applied to make the probability density function in hypergrid structure continued over the entire range
[35], where maxz and minz represent the maximal and minimal values of the training data in attribute z, respectively. The
parameter, h, is set as the maximum value in the distribution interval in Eq. (13). In a distributed manner, each SN works
out K�, and CH obtains the final K by averaging all of the K� from SNs.
K� ¼ r
s

Xs

i¼1

RDR xið Þj j ð15Þ
r ¼ NP�j jQq
z¼1dmaxz�minz

h e ð16Þ
K ¼ 1
m

Xm
i¼1

K�
i ð17Þ
The update of NP is similar to that in [35], which is coordinated by SNs and CH. The process of update is shown in Algo-
rithm 1.
55

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
Algorithm 1. Distributed learning process.
56
1: while SN triggers update do

2: SN asks CH for update

3: CH broadcasts update command among its Cluster

4: Each SN sends its local statistical information to CH

5: CH gets a global statistical information, forms a hypergrid structure, and sends these parameters back to SNs

6: Each SN normalizes its local data, and gets local NP� and K�
7: CH merges all NP� and K�, and forms global NP and threshold K

8: end while
4.2. Detection and continuous learning process

After receiving the parameters of HADF from CH, each SN samples data periodically and performs detection according to
the new NP and K. The detection process includes two detectors: the hypergrid based detector and the statistical analysis
based detector. We assume that the ith SN SNið Þ samples a data vector xt ¼ xt1 ; . . . ; xti ; . . . ; xtq

� �
at time t, which is normalized

as yt ¼ yt1 ; . . . ; yti ; . . . ; ytq
h i

. SNimaps the data onto a hypercube Cu1 ;...;uq . The mean and standard deviation of the latest n data

are l ¼ l1; . . . ;li; . . . ;lq

h i
and r ¼ r1; . . . ;ri; . . . ;rq

� �
, respectively. Subsequently, data is tested by two detectors. The prop-

erty of hypergrid based detector is defined as follows.

Property 3. If there are more than K data in RDR of test data, the data is marked as normal by hypergrid based detector,
otherwise the data is marked as anomalous.

In practice, sensor readings have a precision error, p ¼ p1; . . . ; pi . . . ; pq

� �
, which can be found in sensor datasheet. To elim-

inate the influence of accuracy, the statistical analysis based detector calculates the absolute difference, di, between xti and
li, and compares the difference, di, with the accuracy, pi. Besides, di is also compared with 3ri. The detailed property is given
as follows.

Property 4. If the absolute difference, di, is less than pi or 3ri, the data is marked as normal by the statistical detector,
otherwise the data is marked as anomalous.

Combining the two detectors, we give the property of HADF as follows.

Property 5. Combining the different results of hypergrid based detector and statistical analysis based detector, r1 and r2, the
situations of test data, x, are diverse.
� If both r1 and r2 are true, then x is normal.
� If both r1 and r2 are false, then x is obviously abnormal.
� If r1 is true, but r2 is false, then x is marked as a contextual anomaly, which is detected as normal in the global data dis-
tribution but is a local fault.

� If r2 is true, but r1 is false, then concept drift has occurred if this situation continuously happens.

Those obvious anomalies in Fig. 1 (such as outlier faults and stuck-at faults) can be easily detected by hypergrid based
detector because they are far different from the normal data. In the meantime, the statistical analysis based detector can
be a lightweight method to detect the contextual and noisy anomalies.

During detection, we count the data size (S) in RDR of test data and record the amount of data bS�

in RDR except the

hypercube, where the test data is mapped. Once the value of S is larger than K, counting stops. The continuous learning pro-

cess is influenced by bS, the result of the statistical analysis based detector (r2) and NP. Generally, for the data marked as nor-

mal by statistical analysis detector, if its mapped information is not recorded in NP, or its bS is larger, it will be recorded into
the NP with a higher weight. Although some low-intensity noisy data may be recorded by NP, their initial weights are small

and have little influence on the detection. The use of bS as the size of neighbor data, not S, is to reduce the likelihood that
continuous constant anomalies will be learned. Besides, we increase a probabilistic mechanism to further reduce the possi-
bility of anomalies being recorded. Finally, NP will be completely replaced at the next update.

Algorithm 2 details the procedure of detection and continuous learning process.

Ta
Ex

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
Algorithm 2. Hypergrid and statistical analysis based detection and continous learning process.
ble 2
perimental datasets.

Datasets Data Type Node ID Anomaly rate (%)

IBRL Temperature, Humidity & Light 21, 22, 26 5
SensorScope (SS) Ambient temperature, Surface temperature & Humidity 12, 15, 17 5

57
Size

20,00
20,00
Input:

Normal profile, NP ¼ pos;weight½ �

The threshold of hypergrid based method, Kh i

The precision error of sensor reading, p ¼ p1; . . . ; pi . . . ; pq
1: repeat

2: SN samples a data xt

3: Normalizes test data xt

4: maps xt onto hypergrid structure Cu1 ;...;uq according to Eq. (4)
5: counts S and bS in RDR of Cu1 ;...;uq according to Eq. (9)

6: r1 (gets Hypergrid based detector result according to Property 3

7: obtains mean l and standard deviation r of recent normal data

8: r2 (gets Statistical analysis based detector result according to Property 4

9: result (gets final detection result according to Property 5

10: if triggers continuous learning process then

11: if Cu1 ;...;uq 2 NP then
12: NP (increases the weight of Cu1 ;...;uq in NP according to r2 and bS

13: else
14: initializes the weight w of Cu1 ;...;uq according to r2 and bS� �

15: NP (adds Cu1 ;...;uq ;w into NP

16: end if

17: end if

18: until Next distributed learning process in Algorithm 1
4.3. Complexity analysis

The main computation overhead of HADF is spent on hypergrid and statistical analysis detectors. In the update process of
hypergrid based detector, a main complexity of O nlognð Þ is incurred at each SN for sorting all data coordinates nð Þ and form-
ing NP*. Meanwhile, CH requires a complexity of O uloguð Þ to sort all NP*, where u ¼ Pm

i¼1 NP�
i

�� ��. The detection process of

hypergrid based detector is incurred at SNs and yields a complexity of at least O logvð Þ and at most O 3q�1logv
�

, where v
is the size of NP v < u � nð Þ, and q is the dimension of feature space. Additionally, HADF performs the statistical analysis
detector at SNs by comparing the measurement with statistical metrics (like mean, standard deviation) in each attribute,
which requires a complexity of O qð Þ; q is the dimension of feature space. Overall, HADF has a complexity of O nlognð Þ.

5. Experimental results

To evaluate our proposed HADF, we have conducted several experiments on two datasets. All the algorithms were imple-
mented using Python scripts, on a PC with a 2.6 GHz Intel(R) Core(TM) i7-1075H CPU, 16G memory, and the Windows10
operating system.

5.1. Datasets

The real-world datasets include Intel Berkeley Research Lab datasets [18] and SensorScope datasets [14,32], as shown in
Table 2.

The Intel Lab dataset was collected from 54 Mica2Dot sensors deployed in the Intel Berkeley Research Lab (IBRL) between
February 28th and April 5th, 2004. Each node collects humidity, temperature, light, and voltage values once every 31 s.
0
0

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
SensorScope is an outdoor sensor network deployment project consisting of several deployments. Here we use the Lau-
sanne Urban Canopy Experiment (LUCE) deployment on the EPFL campus since July 2006. LUCE consists of 97 weather-
stations with sensors for sensing the environmental attributes once every 30 s such as ambient temperature, surface tem-
perature and relative humidity.

Most datasets in WSN are unlabeled and the cost of manually labelling a large amount of data is high. Also, few datasets
contain various types of anomalies to verify our methods. Therefore, some anomaly insertion methods have been applied to
address this issue [30,35]. In this paper, we also adopt anomaly insertion methods to verify our method. We adopt the same
assumption as in [6,30,32] that only a few sensors fail at the same time. First, we select the data interval with no obvious
anomalies in the original datasets. Then, in each trial of the experiments, the same as in [30,35], we randomly chose propor-
tional indices (5%) that contain the anomalous data. The samples at the indices are replaced by abnormal data generated by
certain methods. Due to the large variation (from 0 to 1,800) of light data in the IBRL dataset, the anomaly insertion methods
for light data are different from other types of data. The D of outlier faults in Eq. (1) obey a random distribution of (10, 50)
((1,000, 1,500) for light data). Stuck-at faults are simulated by continuous insertion of a constant value as shown in Eq. (2),
where the duration is set as 20 samples and the value of g is chosen from [90, 100] ([900, 1,000] for light data). Let l and r be
the mean and standard deviation of original data respectively. A random normal distribution function, N lþ c; k � rð Þ, is used
to generate noisy faults. In this paper, we set c ¼ 2 and k ¼ 1:5 (c ¼ 100 and k ¼ 1:5 for light data).

Considering multivariate anomalies, we further subdivide the types of anomalies according to the number of attributes
that are influenced by a certain fault. For example, Outlier(1) represents that one of the attributes is contaminated by outlier
fault at one moment, Noise(2) represents that two of the attributes are contaminated by noisy faults at one moment, and
Constant(3) represents that all three attributes are contaminated by stuck-at faults at one moment.

5.2. Accuracy metrics

For the two-class classification problem, the samples can be classified into four types: true positive (TP), true negative
(TN), false positive (FP) and false negative (FN). TP represents the volume of anomalies correctly labeled as abnormal. TN rep-
resents the volume of normal data correctly labeled as normal. FP denotes the volume of normal data wrongly labeled as
abnormal. And FN denotes the volume of anomalies wrongly labeled as normal. The following metrics are used to evaluate
the performance of HADF: FPR, Precision (P), Recall (R) and F1-score (F1).
FPR ¼ FP
TN þ FP

: ð18Þ

P ¼ TP
TP þ FP

: ð19Þ

R ¼ TP
TP þ FN

: ð20Þ

F1 ¼ 2 � P � R
P þ R

: ð21Þ
Considering both runtime and F1-score, we define a new metric w called comparative score as below:
w ¼ F1

time
� 100: ð22Þ
The higher value of w represents the better performance of the method.

5.3. Performance under different widths

According to Eq. (12), the average size of RDR increases exponentially with the size of w. We have adopted two optimiza-
tion strategies to reduce the computational complexity of hypergrid based detector:

� When the data is judged to be normal, the search will stop.
� The hypercube of the data map has the highest search priority.

For the nature of sensor data, adjacent data always have similar values. Therefore, those adjacent data are prone to be
mapped onto the same hypercube whose weight increases with the addition of normal data during the continuous learning
process. Once the weight is larger than the threshold, subsequent test data that mapped into the same hypercube will be
labeled as normal directly.

To obtain the appropriate value of w, we have studied the influence of different w values on both the detection perfor-
mance and the average searched hypercubes. IBRL is used in this experiment, and its data volume is 9,000, among which
the first 3,000 samples are pre-training data. The rest 6,000 data are test data that contain 300 outlier faults. Buffer size
58

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
of the node is set to 3,000, and normal data is saved with a probability of 0.8. As shown in Fig. 3, the increase in width
expands the size of the detection region, which improves the detection accuracy at the expense of computing time. First,
we have taken 21 values from 0 to 1 by an interval of 0.05. From the result in Fig. 6(a), F1-score is increased with the width
w and reaches about 94.5% when w is between 0.8 and 1. Then, we have taken 21 values from 0.8 to 1 using an interval of
0.01. The value of the F1-score reaches the maximum when w is 0.87 in Fig. 6(b). Due to the continuous learning and detec-
tion mechanisms, the average number of the searched hypercubes is smaller than the average size of RDR. After comprehen-
sive consideration, we set the value of w as 0.87 in the following experiments.

5.4. Performance for detecting multiple types of data faults

In this subsection, we demonstrate the performance of HADF for detecting multiple anomalies. HGDB [35], HypGridE [10]
and KitNET [21] are used as counterpart methods. As shown in Fig. 7(a)–(c), HGDB is a basic distributed hypergird based
method, which is used as a benchmark, and HypGridE is an ensemble learning method that combines multiple HGDB detec-
tors to form a strong one by weighting all the results. The difference between HADF and the above two methods in detection
is that HADF applies not only a hypergrid based detector but also a statistical analysis detector. For the learning process as
shown in Fig. 7(d)–(f), both HGDB and HypGridE update their normal profile periodically. However, SN using HADF updates
its NP in two manners (the distributed learning process in the cluster and the continuous learning process at local). Addi-
tionally, we also compare HADF with a neural network method called KitNET. KitNET is an unsupervised, integration-
based anomaly detection method, and it uses an ensemble of neural networks called autoencoders to collectively differen-
tiate between normal and abnormal data. To evaluate the efficiency of continuous learning, we have improved the contin-
uous learning mechanism to form a new HGDB scheme and develop a new HGDBI method. The difference between HADF and
HGDBI is whether to use RDR.

All of the data in Table 2 are used for experiments, among which the first 10,000 samples of each node are training sets,
and the rest are test data that contains 500 anomalies (5%). KitNET has trained its model using all of the training data. The
buffer sizes of sensors in the four hypergrid based methods are set as 3,000; therefore they only use the last 3,000 data of
training data in each node to perform pre-training and relearn its model during detection. To ensure the reliability of the
results, each group of experiments has been repeated for 5 times, and we have taken the average value as the final result.

As shown in Figs. 8–13, the performance of each algorithm varies with the different types and sizes of anomalies. The
performance of the algorithm is increased with the increasing size of anomalies, except in a few cases for detecting the
stuck-at faults by HGDB and HypGridE, as shown in Figs. 9 and 12(a). The recall of the four hypergrid based methods for
outlier is higher than those of stuck-at faults and noisy faults. Due to the use of continuous learning method, HGDBI has
higher precision than HGDB. Moreover, comparing the performance of HADF and HGDBI, RDR used in HADF has higher
robust than improved L1 detection region used in HGDB. KitNET is sensitive to the number of anomalies, and its recall
increases with the increasing number of anomalies.

In Figs. 8–13(a), overall, the recall of five methods is increased with the increasing of the number of faults, since the
greater the number of anomalies, the measurement is farther away from the normal data. However, in Figs. 9 and 12(a),
the performance of HGDB and HypGridE for stuck-at faults is decreased with the increase of the size of faults. Because most
online anomaly detections require to dynamically update their normal profile. Therefore, the historical data may be stored
locally with probability for the next update. Unlike outlier and noisy faults, the stuck-at faults show continuous constant
values. As the number of stuck-at faults increases, their size that is stored randomly also increases, so it may lead to the for-
mation of a ‘‘normal” cluster in the training data and eventually affect the performance of the following models. Additionally,
we have tried to store only the data detected as normal, but both HGDB and HypGridE show a low precision. Storing only the
normal data would obliterate a large number of misjudged data, which result in an incomplete normal profile, and get a
worse result. HADF achieves a high precision because it adopts the strategy of preserving only normal data (Step 4 in
Fig. 5)) to avoid the influence of stuck-at faults anomalies on the new normal profile. KitNET is sensitive to the number
of faults. As the value and number of faults increase, the detection performance of KitNET changes significantly (except
for Figs. 10 and 13(a)). The value of stuck-at faults is greater than the other two types of faults, so they are easier to be
detected by KitNET for their higher anomaly scores. In Figs. 10 and 13(a), KitNET achieves a low recall (about 0.04 for IBRL
and 0.24 for SS) for detectings noisy faults when compared with other algorithms. Actually, there are many causes for the
above results. Firstly, there are fewer attributes in the data set, resulting in a small number of encoders; Secondly, the value
of the noisy faults is close to the data area of the training set, which results in a low anomaly score in the output layer. The
statistical analysis detector adopted by HADF effectively improves the detection accuracy of noisy anomalies.

In Figs. 8–13(b), due to the concept drift of the sensor data, HGDB achieves a high FPR (about 37.3% for IBRL, 29.2% for SS),
which results in a low precision. Although HypGridE has adopted ensemble HGDB detectors to form a strong one, it still has a
non-negligible FPR (about 13.6% for IBRL, 10.2% for SS); meanwhile, its recall is reduced. To relieve the influence of concept
drift, HGDBI and HADF adopt continuous learning method (Step 3 in Fig. 5) that effectively reduces FPR (HGDBI: about 19.1%
for IBRL, 12.6% for SS; HADF: about 0.70% for IBRL, 0.74% for SS) and improves the precision. The precision of KitNet is also
increased with the increasing of the number of faults. However, KitNet achieves lower precision than our scheme due to
more false positives caused by a fixed threshold. Besides, Low anomaly scores for noisy faults also result in low precision
of KitNet. Comparing the precision of HADF and HGDBI, the RDR used in HADF improves the robustness of our scheme
and significantly increases the precision.
59

Fig. 6. Performance under different widths.

Fig. 7. The overview of three hypergrid based methods: (a), (b) and (c) are the detection processes of HGDB, HypGridE and HADF, respectively; (d), (e) and
(f) are the learning processes of HGDB, HypGridE and HADF, respectively.

Fig. 8. Performance of detecting outlier faults in IBRL.

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
In Figs. 8–13(c), we compare the F1-score of different methods in terms of recall and precision. In Figs. 8 and 11(c), HADB
achieves the lowest score for detecting outliers and stuck-at faults due to its lowest precision. The scores of HGDB and Hyp-
GridE for stuck-at faults are decreased with the increasing number of faults, because of the formation of a false ‘normal’ clus-
60

Fig. 9. Performance of detecting stuck-at faults in IBRL.

Fig. 10. Performance of detecting noisy faults in IBRL.

Fig. 11. Performance of detecting outlier faults in SS.

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
ter in the learning process, as mentioned before. The bad detection rate of KitNET for noisy faults leads to the worse score in
Figs. 10 and 13(c). Overall, HADF outperforms other methods in the detection of various faults.
5.5. Scores of different algorithms

To obtain the scores of different algorithms using Eq. (22), we have recorded the average runtime of algorithms for dif-
ferent anomalies. HGDB, HGDBI, HypGridE and HADF update their NP and perform detection in a distributed fashion. Still,
the execution of the algorithm in the simulation is single-threaded so that the runtime is divided by the number of nodes.

The runtime costs of five methods for IBRL and SS datasets are shown in Tables 3 and 4, respectively. We can see from
Tables 3 and 4 that our proposed HADF and HGDBI spend a little more runtime than HGDB. However, the detection perfor-
mance (considering all of precision, F1 score and recall) of our HADF as shown in Figs. 8–13 is obviously more accurate;
HGDB is the fastest method but achieves the worst accuracy of fault detection. Our HADF consists of hypergrid detection
61

Table 3
Average runtime for fault detection in IBRL (unit: second).

Number of faults HGDB HGDBI HypGridE KitNET HADF

Outlier Fault 1 23.40 27.19 137.79 41.88 28.34
2 23.29 27.36 139.34 42.14 28.24
3 23.20 26.99 139.71 41.77 28.09

Stuck-at Faults 1 22.64 26.94 130.02 41.66 28.08
2 22.47 27.04 123.96 41.78 28.16
3 22.27 26.81 120.12 42.46 28.16

Noisy Faults 1 23.29 27.15 134.20 41.38 28.42
2 23.51 27.40 137.18 41.26 28.56
3 23.88 27.49 139.96 41.44 28.61

Table 4
Average runtime for fault detection in SS (Unit: second).

Number of faults HGDB HGDBI HypGridE KitNET HADF

Outlier Fault 1 24.49 28.78 135.51 42.22 29.28
2 24.10 28.72 128.03 41.74 29.38
3 23.77 28.55 122.36 41.74 29.34

Stuck-at Faults 1 23.64 28.58 127.90 41.70 29.43
2 23.42 28.53 119.62 41.76 29.44
3 23.56 28.41 113.18 41.83 29.35

Noisy Faults 1 25.22 28.52 137.37 42.13 29.80
2 25.18 28.61 134.43 42.10 29.71
3 24.97 28.84 130.26 41.75 29.84

Fig. 12. Performance of detecting stuck-at faults in SS.

Fig. 13. Performance of detecting noisy faults in SS.

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
process and statistical analysis step, so it spends a little more time than HGDB. By improving HGDB, our proposed HGDBI is
used to evaluate the efficiency of the robust detection region (RDR). Using a RDR, HADF has a complexity at most

O 3q�1logv
�

for each data detection, and HGDBI uses the improved detection region in [35], which has complexity at most
62

Fig. 14. Comparative scores for fault detection in IBRL (a: for Outlers b: for Stuck-at Faults c: for Noisy Faults).

Fig. 15. Comparative scores for fault detection in SS (a: for Outlers b: for Stuck-at Faults c: for Noisy Faults).

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
O 2q�1logv
�

for each data detection. Meanwhile, the runtime of HADF is significantly less than HypGridE and KitNET. This is

because HypGridE is an ensemble method, and its runtime increases linearly with the number of detectors, while KitNET
needs massive data to train its auto-encoders.

Note that because of the same size of two datasets, the time costs in Table 4 are approximately the same as that in Table 3.
Additionally, since the data distribution of SS is slightly sparser than that of IBRL, the four hypergrid based methods need to
spend a little more time for searching the detection regions in NP.

We use comparative score wð Þ to evaluate the overall performance of the algorithms, and the results are shown in Figs. 14
and 15.

As shown in Fig. 14, the comparative scores of five methods for IBRL vary with the type and size of anomalies. Overall, the
scores increase with the increasing number of faults, except in a few cases for detecting the stuck-at faults by HGDB and
HypGridE. As mentioned before, stuck-at faults form a ’normal’ cluster in the learning process, which causes a low precision
for those faults in the following detection. From the results, although HGDB had the least running time in Table 3, its poor
detection performance results in a low score (about 0.92 for outliers, 0.64 for stuck-at faults, and 0.65 for noisy faults). Hyp-
GridE takes several times more calculation time than other methods, so its comparative score is the worst/lowest (about 0.25
for outliers, 0.20 for stuck-at faults, and 0.19 for noisy faults). The detection accuracy of KitNET for noisy faults is low, which
also leads to a bad result (about 0.13). HGDBI has a similar runtime with HADF, but its lower precision causes a lower score
(about 1.22 for outliers, 1.19 for stuck-at faults, and 1.44 for noisy faults) than HADF. So, HADF outperforms other counter-
part methods in detecting various anomalies.

The comparative scorces of five methods for SS are shown in Fig. 15. The results in Fig. 15 are similar with those in Fig. 14,
and HADF also shows a better performance than other counterpart methods.

In summary, we can get three strategies from the experimental study to help achieve better performance for detecting
multiple anomalies from WSNs. First, the distributed online anomaly detection methods for WSNs need to consider the pos-
sible concept drift of sensing data. Otherwise, it may result in low precision. Second, for some lazy-learning methods, if they
adopt the strategy of random storage to store historical data, it is necessary to consider the impact of stuck-at faults. Espe-
cially for those distance-based detection methods, stuck-at faults may form a ‘normal’ cluster, which will result in low pre-
cision for this kind of anomalies. Third, the performance of the methods may vary with the change of the types and sizes of
63

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
anomalies. Therefore, we can obtain a comprehensive performance of the methods by verifying them for different types and
sizes of anomalies that may occur in certain filed.

6. Conclusion

In this paper, a Hypergrid based Adaptive Detection of Faults (HADF) method for detecting multiple data faults in WSNs
was proposed, which applied the hypergrid and statistical analysis based detectors to detect three types of data faults. Par-
ticularly, we redefined a robust L1 detection region for hypergrid based detector, so that HADF was more robust than those
methods using the other two kinds of improved L1 detection regions. Furthermore, a continuous learning mechanism was
adopted to reduce the influence of concept drift in sensor data. Extensive experiments on two real-world datasets had
demonstrated that HADF performed better than three counterpart methods in terms of accuracy and comparative score
(F1-score/runtime).

CRediT authorship contribution statement

Lingqiang Chen: Conceptualization, Methodology, Validation, Writing - original draft, Visualization. Guanghui Li: Writ-
ing - review & editing, Supervision, Project administration, Funding acquisition. Guangyan Huang: Methodology, Writing -
review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No. 62072216), Wuxi International
Science and Technology Research and Development Cooperative Project (No. CZE02H1706), and the 111 Project (No.
B12018).

References

[1] Pooyan Abouzar, David G Michelson, Maziyar Hamdi, Rssi-based distributed self-localization for wireless sensor networks used in precision
agriculture, IEEE Trans. Wireless Commun. 15 (10) (2016) 6638–6650.

[2] Ahmad Alaiad, Lina Zhou, Patients’ adoption of wsn-based smart home healthcare systems: an integrated model of facilitators and barriers, IEEE Trans.
Professional Commun. 60 (1) (2017) 4–23.

[3] Juan Aponteluis, Juan Antonio Gomezgalan, F Gomezbravo, Manuel Sanchezraya, Javier Alcinaespigado, Pedro Teixidorovira, An efficient wireless
sensor network for industrial monitoring and control, Sensors 18 (1) (2018) 182..

[4] Vic Barnett, Toby Lewis, Outliers in Statistical Data, third ed., Wiley Series in Probability and Mathematical Statistics, Wiley, Chichester, 1974.
[5] Satish Bhojannavar, Chetan Bulla, Vishal Danawade, Anomaly detection techniques for wireless sensor networks – a survey, Int. J. Adv. Res. Comput.

Commun. Eng. 2 (10) (2013).
[6] Varun Chandola, Arindam Banerjee, Vipin Kumar, Anomaly detection: a survey, ACM Comput. Surveys 41 (3) (2009) 15.
[7] Poyu Chen, Shusen Yang, Julie A. Mccann, Distributed real-time anomaly detection in networked industrial sensing systems, IEEE Trans. Ind. Electron.

62 (6) (2015) 3832–3842.
[8] Cisco. Cisco Annual Internet Report, 2018–2023. White paper c11–741490. Cisco Systems Inc, San Jose, CA, 2020..
[9] X. Deng, Y. Jiang, L.T. Yang, L. Yi, J. Chen, Y. Liu, X. Li, Learning automata based confident information coverage barriers for smart ocean internet of

things, IEEE Internet Things J. (2020) 1.
[10] Zhiguo Ding, Minrui Fei, Du. Dajun, Fan Yang, Streaming data anomaly detection method based on hyper-grid structure and online ensemble learning,

Soft Comput. 21 (20) (2017) 5905–5917.
[11] Jinan Fan, Qianru Zhang, Jialei Zhu, Meng Zhang, Zhou Yang, Hanxiang Cao, Robust deep auto-encoding gaussian process regression for unsupervised

anomaly detection, Neurocomputing 376 (2020) 180–190.
[12] Shah Ahsanul Haque, M.M. Rahman, Syed Mahfuzul Aziz, Sensor anomaly detection in wireless sensor networks for healthcare, Sensors 15 (4) (2015)

8764–8786.
[13] V.J. Hodge, S. O’Keefe, M. Weeks, A. Moulds, Wireless sensor networks for condition monitoring in the railway industry: a survey, IEEE Trans. Intell.

Transp. Syst. 16 (3) (2015) 1088–1106.
[14] Francois Ingelrest, Guillermo Barrenetxea, Gunnar Schaefer, Martin Vetterli, Olivier Couach, Marc B. Parlange, Sensorscope: Application-specific sensor

network for environmental monitoring, ACM Trans. Sensor Networks 6(2) (2010) 17..
[15] Bo Jiang, Guosheng Huang, Tian Wang, Jinsong Gui, Xiaoyu Zhu, Trust based energy efficient data collection with unmanned aerial vehicle in edge

network, Trans. Emerg. Telecommun. Technol. (2020).
[16] Tae Young Kim, Sungbae Cho, Web traffic anomaly detection using c-lstm neural networks, Expert Syst. Appl. 106 (2018) 66–76..
[17] Edwin M. Knorr, Raymond T. Ng, Vladimir Tucakov, Distance-based outliers: algorithms and applications, VLDB J. 8 (3) (2000) 237–253.
[18] Dinesh Kumar Kotary, Satyasai Jagannath Nanda, Distributed robust data clustering in wireless sensor networks using diffusion moth flame

optimization, Eng. Appl. Artif. Intell. 87 (2020) 103342..
[19] Ting Li, Wei Liu, Tian Wang, Zhao Ming, Xiong Li, Ming Ma, Trust data collections via vehicles joint with unmanned aerial vehicles in the smart internet

of things, Trans. Emerg. Telecommun. Technol. (2020) e3956.
[20] Yanjun Li, Zhi Wang, Yeqiong Song, Wireless sensor network design for wildfire monitoring, in: 2006 6th World Congress on Intelligent Control and

Automation, 1, 2006, pp. 109–113..
[21] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, Asaf Shabtai, Kitsune: an ensemble of autoencoders for online network intrusion detection. CoRR, abs/

1802.09089, 2018..
64

http://refhub.elsevier.com/S0020-0255(20)31176-2/h0005
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0005
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0010
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0010
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0025
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0025
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0030
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0035
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0035
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0045
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0045
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0050
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0050
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0055
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0055
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0060
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0060
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0065
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0065
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0075
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0075
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0085
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0095
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0095

L. Chen, G. Li and G. Huang Information Sciences 553 (2021) 49–65
[22] Antonio Molinapico, David Cuestafrau, Alvaro Araujo, Javier Alejandre, Alba Rozas, Forest monitoring and wildland early fire detection by a hierarchical
wireless sensor network, J. Sensors 2016 (2016), 1–8.

[23] Arslan Munir, Joseph Antoon, Ann Gordonross, Modeling and analysis of fault detection and fault tolerance in wireless sensor networks, ACM Trans.
Embed. Comput. Syst. 14 (1) (2015) 3.

[24] S. Rajasegarar, C. Leckie, J.C. Bezdek, M. Palaniswami, Centered hyperspherical and hyperellipsoidal one-class support vector machines for anomaly
detection in sensor networks, IEEE Trans. Inf. Forensics Secur. 5 (3) (2010) 518–533.

[25] Sutharshan Rajasegarar, Christopher Leckie, Marimuthu Palaniswami, Hyperspherical cluster based distributed anomaly detection in wireless sensor
networks, J. Parallel Distrib. Comput. 74 (1) (2014) 1833–1847.

[26] Murad A Rassam, Anazida Zainal, Mohd Aizaini Maarof, An efficient distributed anomaly detection model for wireless sensor networks, AASRI Procedia
5 (2013) 9–14.

[27] Yingying Ren, Zhiwen Zeng, Tian Wang, Shaobo Zhang, Guoming Zhi, A trust-based minimum cost and quality aware data collection scheme in p2p
network, Peer-to-Peer Network. Appl. (2020).

[28] Shiblee Sadik, Le Gruenwald, Research issues in outlier detection for data streams, SIGKDD Explor. Newsl. 15 (1) (2014) 33–40.
[29] Osman Salem, Yaning Liu, Ahmed Mehaoua, Raouf Boutaba, Online anomaly detection in wireless body area networks for reliable healthcare

monitoring, IEEE J. Biomed. Health Inf. 18 (5) (2014) 1541–1551.
[30] Abhishek B. Sharma, Leana Golubchik, Ramesh Govindan, Sensor faults: detection methods and prevalence in real-world datasets, ACM Trans. Sen.

Netw. 6 (3) (2010) 23..
[31] Z. Tao, C. Wandong, L. Gang, Topology control for wireless sensor networks, in: 2007 IFIP International Conference on Network and Parallel Computing

Workshops (NPC 2007), 2007, pp. 343–348..
[32] Hui Yie Teh, Andreas W. Kempa-Liehr, Kevin I. Kai Wang, Sensor data quality: a systematic review, J. Big Data 7 (1) (2020) 11..
[33] P. Vamsi, Anjali Chahuan, Machine learning based hybrid model for fault detection in wireless sensors data, Scalable Inf. Syst. 7(24) (2020) 161368..
[34] Franco Van Wyk, Yiyang Wang, Anahita Khojandi, Neda Masoud, Real-time sensor anomaly detection and identification in automated vehicles, IEEE

Trans. Intell. Transp. Syst. 21 (3) (2020) 1264–1276.
[35] M. Xie, J. Hu, S. Han, H. Chen, Scalable hypergrid k-nn-based online anomaly detection in wireless sensor networks, IEEE Trans. Parallel Distrib. Syst. 24

(8) (2013) 1661–1670.
[36] M. Xie, J. Hu, B. Tian, Histogram-based online anomaly detection in hierarchical wireless sensor networks, in: 2012 IEEE 11th International Conference

on Trust, Security and Privacy in Computing and Communications, 2012, pp. 751–759.
[37] S. Yoo, J. Kim, T. Kim, S. Ahn, J. Sung, D. Kim, A2s: automated agriculture system based on wsn, in: 2007 IEEE International Symposium on Consumer

Electronics, IEEE, 2007, pp. 1–5.
[38] Y. Zhang, N.A.S. Hamm, N. Meratnia, A. Stein, M. van de Voort, P.J.M. Havinga, Statistics-based outlier detection for wireless sensor networks, Int. J.

Geogr. Inf. Sci. 26 (8) (2012) 1373–1392.
[39] Yang Zhang, Nirvana Meratnia, Paul J.M. Havinga, Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector

machine, Ad Hoc Networks 11 (3) (2013) 1062–1074.
65

http://refhub.elsevier.com/S0020-0255(20)31176-2/h0110
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0110
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0115
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0115
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0120
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0120
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0125
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0125
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0130
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0130
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0135
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0135
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0140
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0145
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0145
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0170
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0170
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0175
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0175
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0180
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0180
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0180
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0185
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0185
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0185
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0190
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0190
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0195
http://refhub.elsevier.com/S0020-0255(20)31176-2/h0195

	A hypergrid based adaptive learning method for detecting data faults in wireless sensor networks
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Anomalies in WSN streaming data
	3.2 Hypergrid based anomaly detection method

	4 The hypergrid based adaptive detection of faults method
	4.1 Distributed learning process
	4.2 Detection and continuous learning process
	4.3 Complexity analysis

	5 Experimental results
	5.1 Datasets
	5.2 Accuracy metrics
	5.3 Performance under different widths
	5.4 Performance for detecting multiple types of data faults
	5.5 Scores of different algorithms

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

