This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2021.3102238, IEEE Internet of

Things Journal

ADGCN: An Asynchronous Dilation Graph
Convolutional Network for Traffic Flow Prediction

Tao Qi, Guanghui Lif, Linggiang Chen and Yanming Xue

Abstract—Spatial-temporal graph modeling plays an impor-
tant role in the fields of transportation, meteorology, and social
networks. Traffic flow prediction is a classic spatial-temporal
modeling task. Existing methods usually do not take into account
the asynchronous spatial-temporal correlation in traffic data.
In addition, due to the complexity and variability of traffic
data, long-term traffic forecasting is highly challenging. In
order to solve the above problems, this paper proposes a new
deep learning-based Asynchronous Dilation Graph Convolution
Network (ADGCN) to model the spatial-temporal graphs. We
mine the asynchronous spatial-temporal correlation in the traf-
fic network, and propose the Asynchronous Spatial-Temporal
Graph Convolution (ASTGC) operation to extract this special
relationship. Furthermore, we extend the dilated 1D causal
convolution to a graph convolution. The receptive field of the
model increases exponentially with the increase of the network
depth. Experiments are conducted on three public traffic datasets,
and the results show that the prediction performance of ADGCN
is better than the existing counterpart methods, especially in long-
term prediction tasks.

Index Terms—Traffic flow prediction; graph convolutional net-
work; asynchronous spatial-temporal correlation; dilated causal
convolution.

I. INTRODUCTION

HE modern city is gradually developing into a smart

city [1]. With the acceleration of urbanization and the
urban population’s substantial growth, comprehensive urban
governance faces tremendous pressure. Traffic management
is a vital part of urban management, aiming to relieve the
traffic congestion, exhaust pollution, and traffic accidents. In
recent years, intelligent transportation systems (ITS) play an
increasingly important role in urban traffic management and
smart city construction. Traffic prediction is the basis of in-
telligent transportation systems, and accurate traffic prediction
is essential for many applications. For example, traffic speed
prediction can avoid accidents to the greatest extent; travel de-
mand prediction can facilitate the online car-hailing operation
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platform to allocate sufficient online car-hailing resources to
areas with high travel demand [2]; reliable congestion time
prediction is of great benefit to ease congestion and reduce
travel time [3].

Given the historical traffic flow information and the traf-
fic network information, traffic prediction is to predict the
traffic network’s future traffic flow information. With the
continuous growth of traffic-related available data sets and
the development of machine learning technology, more and
more researchers have begun to try to use deep learning
methods to study traffic prediction problems. Most recent
studies use Graph Neural Networks (GNN) to model the
spatial connections of traffic data and use RNN or CNN to
model the temporal correlation of traffic data. These models
effectively model the spatial and temporal connections in
the transportation network and have achieved good results
in various spatial-temporal prediction tasks. However, none
of these models considered the asynchronous spatial-temporal
correlation in traffic data.
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Fig. 1: Asynchronous spatial-temporal correlation in traffic
data. (a) The traffic network. (b) The traffic speed of node
a and node b.

Consider the traffic network shown in Fig. 1(a). Node a,
node b, and node c¢ are sensor nodes placed on the traffic
network, where node a is the upstream node of node b. Fig.
1(b) shows the changing trend of the traffic speed of node
a and node b in a certain period. It can be seen from Fig.
1 that at time ¢4, the traffic speed at node a reaches a local
maximum, and the traffic speed at node b is not immediately
affected but reaches the local maximum at time ¢5. This
means that the change in traffic flow between two nodes is
asynchronous. In other words, the traffic speed has an obvious
spatial correlation, this correlation is not isolated but highly
correlated with time. We often observe this phenomenon in our
daily life: when traffic congestion occurs on a road section,
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the adjacent road section may become congested after a while.
We call this phenomenon the asynchronous spatial-temporal
correlation of traffic flow. Modeling the asynchronous spatial-
temporal correlation in the traffic network can effectively
improve the prediction performance of the model.

Besides, the current research on spatial-temporal graph
modeling is not effective in learning temporal dependence.
RNN-based approaches often have problems such as time-
consuming iterative propagation, gradient explosion/vanishing
and do not perform well in long-term prediction tasks [4],
[5]. The advantage of the CNN-based methods is that it
can be calculated in parallel, the gradient is relatively stable
during the calculation process, and the memory requirement is
low. However, these works use standard 1D convolution. The
receptive field size increases linearly with the increase of the
number of hidden layers in the network, so these models need
to use many layers to capture long-range sequences.

To solve the above-mentioned problems, we present a
method based on a graph neural network: Asynchronous
Spatial-temporal Dilation Graph Convolutional Network
(ADGCN) to model the traffic network. We propose an Asyn-
chronous Spatial-Temporal Correlation Matrix (ASTCM) and
its corresponding Adaptive Asynchronous Spatial-Temporal
Correlation Weight Matrix (adpASTCWM) to model the asyn-
chronous spatial-temporal correlation in traffic data. Motivated
by Graph WaveNet [6], we extend the 1D dilated causal
convolution network to the graph convolution network, named
Asynchronous Spatial-Temporal Dilated Causal Convolution
(ASTDC). We stack multiple ASTDC layers to extract the
long-term asynchronous spatial-temporal dependence of traffic
data. The receptive field of the model increases exponentially
as the number of ASTDC layers increases. The main contri-
butions of this work are as follows:

1) We design two matrices (ASTCM and adpASTCWM) to
model the asynchronous spatial-temporal correlation in
traffic data. These two components flexibly model the
complex and dynamic spatial-temporal dependencies in
the transportation network.

2) We extend the 1D dilated causal convolution to the graph
convolution network, and propose Asynchronous Spatial-
Temporal Dilated Causal Convolution to capture the long-
term temporal dependencies with a shallower network,
effectively alleviating overfitting.

3) We conduct detailed experiments of the proposed model
on three real-world traffic datasets. Compared with
the existing model, the prediction performance of the
ADGCN model has been significantly improved.

The remainder of this paper is organized as follows. Section II
covers the literature on traffic prediction. Section III introduces
the definition of the problem studied in this research. Section
IV presents the details of our method. In section V, we evaluate
the predictive performance of the ADGCN. We conclude the
paper in Section VI.

II. RELATED WORK
A. Traffic Flow Prediction

In recent years, the research of traffic prediction has
achieved great success. Recently proposed traffic prediction
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methods can be roughly divided into traditional parametric
methods and machine learning methods [7]. The former mainly
includes the time series model, the linear regression model [8],
and the Kalman filter model. The representative method of the
time series model is the Autoregressive Integrated Moving Av-
erage Model (ARIMA). Hamed et al. [9] proposed a prediction
method, using ARIMA to predict the short-term traffic volume
of urban arterial roads. In order to achieve better prediction
performance, researchers have successively proposed Kohonen
ARIMA [10], subset ARIMA [11], seasonal ARIMA [12], and
other methods. The linear regression model uses a regression
function based on historical traffic data to predict future traffic
flow. Sun et al. [13] proposed a method based on a local
linear predictor for interval prediction of traffic time series and
achieved good results on real traffic data. The Kalman filter
model uses the traffic state at the previous moment and the
current moment to predict the future traffic state. Hinsbergen et
al. [14] used the Kalman filter to complete the traffic prediction
task. Traditional parametric methods are relatively simple and
convenient to calculation. Nevertheless, these methods require
data to satisfy certain assumptions, and time-varying traffic
data is too complex to satisfy these assumptions [7].

Machine learning methods only need enough historical data
to automatically learn statistical regularity from traffic data,
which solves these problems well. Zhang et al. [15] applied
the k-nearest neighbor model to predict short-term traffic flow.
Yao et al. [16] proposed a method based on the support vector
regression model to fit traffic flow data. Sun ef al. [17] used
Bayesian network models to model traffic data.

In recent years, with the rapid development of deep learning
and the substantial increase in available traffic data, deep
neural network models have received more and more attention.
According to whether the spatial correlation is considered,
deep neural network models can be divided into two cate-
gories. Some early methods only focus on temporal corre-
lation, e.g., Rilett et al. [18] used a multilayer feedforward
neural network (FNN) to predict freeway link travel times.
Lint et al. [19] used the recurrent neural network to model
traffic flow. Fu et al. [20] applied long short-term memory
network (LSTM) and gated recurrent unit (GRU) to extract
time dependence in traffic data. Fang et al. [21] proposed the
Kalman-LSTM model, which combines Kalman filtering and
LSTM for short-term traffic flow forecasting.

The traffic network has a natural topology. Hence the spatial
correlation of traffic data is also a vital feature. Wu and Tan
[22] proposed a novel short-term traffic prediction method
that extracts the spatial-temporal correlation of traffic data
by fusing CNN and LSTM. Cao er al. [23] designed an
Interactive Time Recurrent Convolutional Network (ITRCN),
which uses a CNN to extract spatial features and a GRU
to extract temporal features. Zhang et al. [24] proposed the
DeepST model, which employs the framework of CNN to si-
multaneously model spatial near and distant dependencies and
temporal closeness, period, and trend. Wang et al. [25] present
a geo-convolution operation by integrating the geographic
information into the classical convolution, capable of capturing
spatial correlations. Zonoozi et al. [26] constructed a novel
Periodic-CRN (PCRN) model, which adapts convolutional
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recurrent networks (CRN) to capture spatial and temporal
correlations, combined with explicit periodic representations.
Lu et al. [27] present a temporal-aware LSTM enhanced by
loss-switch mechanism for short-term traffic flow forecasting.

The performance of CNN-based model on the data in
non-Euclidean space is not satisfactory. In recent years, the
emergence and rapid development of Graph Convolutional
Networks (GCN) [28] [29] have provided a solution to this
problem. Yu et al. [30] proposed a Spatio-temporal Graph
Convolution Network (STGCN) model, which uses Chebyshev
approximation graph convolution operation to extract spatial
dependencies, and uses Gated Convolutional Neural Network
(gate-CNN) modeling temporal dependent, achieving faster
training speed with fewer parameters. Geng et al. [31] encoded
different kinds of non-Euclidean pairwise correlations between
regions into multiple spatial graphs, then they used multi-
graph convolution to extract these correlations. Chen et al.
[32] proposed a Multiple Residual Recurrent Graph Neural
Network (MRes-RGNN), which simultaneously captures the
spatial dependencies and temporal dynamics based on the
graph. Zhao et al. [33] proposed a Time Graph Convolutional
Network (T-GCN) model, representing the traffic network as
a graph structure, and combined GCN and GRU to model
the spatial-temporal dependence of traffic data. Li et al.
[34] first modeled traffic flow as a diffusion process on
a directed graph and proposed a Diffusion Convolutional
Recurrent Neural Network (DCRNN) model. Wu et al. [6]
improved the diffusion process in DCRNN by applying an
adaptive adjacency matrix to consider the dynamics of spatial
associations between nodes and their neighbors. Xie et al. [35]
believed that the process of information diffusion in spatial and
temporal dimensions is homogeneous and proposed an ISTD-
GCN model to simultaneously extract spatial and temporal
features.

The above-mentioned methods have achieved great success
in traffic prediction tasks. However, there is few research
on modeling the asynchronous spatial-temporal correlation in
traffic data. In this study, we propose a new neural network
method, which models the asynchronous spatial-temporal cor-
relation in traffic data and combines the dilated causal con-
volutional network to achieve high prediction accuracy with
fewer parameters.

B. Graph Convolution Network

Convolutional neural networks have achieved remarkable
performance on various tasks in Euclidean space. However,
many cases in the real world are non-Euclidean, such as
social networks, protein molecular structures, traffic networks.
A graph is a classic non-Euclidean data structure, which
can well represent the rich attribute information and their
connections. Due to the powerful expressive ability of graphs,
research of analyzing graphs with machine learning has been
attracted more and more attention [36]. The concept of graph
neural network was first proposed in [37]. After decades of
development, researchers have proposed various variants of
graph neural networks. Existing graph neural networks are
mainly divided into spectral-based methods and spatial-based
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methods. Spectral-based approaches define graph convolution
from the perspective of graph signal processing [38], where the
result of the graph convolution operation is the graph signal
with noise removed [39], [40], [28]. Spatial-based approaches
define graph convolution from the perspective of information
dissemination. Monti et al. [41] use a Gaussian kernel to
learn the connection weights between nodes and neighbors.
Velickovic et al. [42] proposed a graph attention network,
which leverages a masked self-attention mechanism to update
node weights.

ITII. PRELIMINARIES

In this section, we introduce the problem definition studied
in this article. Table I lists the description of key symbols. For
brevity, we describe some abbreviations in Table II.

The traffic network is regarded as a spatial graph, which
can be expressed as G = (V, £, A), where V is a set of road
nodes, € is a set of edges, A € RV*¥ is adjacency matrix
of the graph, which represent the connection between nodes.
If v;,v; € V and (v, v;) € £, then the matrix element a;; is
1 otherwise it is 0. At each time step ¢, the spatial graph G
has a feature matrix X(*) € RN*P_ Given the feature matrix
of the graph GG and its S historical time steps, the task is to
predict the feature matrix of the graph G in the next 7' time
steps. The mapping relationship can be expressed as:

[X(t—S):f,7 G] i> X (t+D:(t+T) (1

Where X(=9)t ¢ RNXDPXS js the input of the model,
XED:HT) ¢ RNXDXT g the prediction output of the
model, and f is the model we learned.

IV. METHODOLOGY

In this section, we first describe the various modules in
the ADGCN model in detail: Asynchronous Spatial-Temporal
Correlation Matrix, Adaptive Asynchronous Spatial-Temporal
Correlation Weight Matrix, Asynchronous Spatial-Temporal
Graph Convolution operation, and Asynchronous Spatial-
Temporal Dilated Convolution layer. Then we outline the
framework of ADGCN.
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Fig. 2: Framework of ADGCN.
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TABLE I: Summary of key symbols

Symbol Description ‘ Symbol Description
G The spatial graph of traffic network N The number of sensor nodes
G Collection of spatial graph D,C,C’  The number of feature dimensions
Gm) Asynchronous spatial-temporal correlation graph | m The number of spatial graphs in asynchronous spatial-temporal graph
V.V w) The set of vertices of graph d,d® Dilation factor
E, € The set of edges of graph 1 Identity matrix
A, A( H) Adjacency matrix of graph A(adp) Adaptive Asynchronous Spatial-Temporal Correlation Weight Matrix
X® Feature matrix of spatial graph at time ¢ h Intermediate calculation results of the model
S,S%,T, T,  The number of time steps Wb Trainable parameters
TABLE II: Description of the abbreviated symbols
Abbreviations Description
ADGCN Asynchronous Spatial-Temporal Dilation Graph Convolutional Networks
ASTCM Asynchronous Spatial-Temporal Correlation Matrix
ASTGC Asynchronous Spatial-Temporal Graph Convolution
adpASTCWM Adaptive Asynchronous Spatial-Temporal Correlation Weight Matrix
ASTDC Asynchronous Spatial-Temporal Dilated Causal Convolution

A. Asynchronous Spatial-Temporal Correlation Matrix

Classical graph convolutional network-based traffic flow
prediction methods often include two components: one is a
spatial information extraction component, which is mainly
composed of GCN; the other is the temporal information
extraction component, which is mainly based on RNN. By
alternately using these two components, these models can pass
the information of a single node to other nodes related to it
in spatial and temporal dimensions. However, there are two
issues with this extraction method. First, the spatial-temporal
correlation between traffic data is often asynchronous. The
classic models does not take this issue into account. The
second is that some information may be lost in the process
of alternately extracting spatial-temporal correlations.

t+2

(b)

Fig. 3: (a) The historical observation data at each time
step constitutes a spatial graph separately. (b) Asynchronous
spatial-temporal correlation graph.

To this end, we represent the traffic network as an asyn-
chronous spatial-temporal graph to model the asynchronous
spatial-temporal correlation between traffic data directly. As
shown in Fig. 3(a), the traffic network has a natural topological
structure. Hence the traffic data collected at each time step can
form a spatial graph. In Fig. 3(b), the red node, the green node,
and the blue node have an adjacency relationship in space, so
we construct an asynchronous spatial-temporal correlation in
the time dimension, which is represented by a red arrow. In
addition, the red nodes are related to themselves in time, and

we use yellow arrows to connect them in the time dimension.
Formally, the above process can be expressed as follows.
We arbitrarily select m(m < S) continuous spatial graph

Gtoit) = (Gto)s Git1)»-++ »Gt,,)) in historical observa-
tion data, then the asynchronous spatial-temporal correla-
tion graph formed by them can be expressed as G (g
(V(H),g(H),A(H)), where V() and &) respectively rep-
resent the vertex set and edge set in the asynchronous spatial-
temporal correlation graph. A g is the Asynchronous Spatial-
Temporal Correlation Matrix, defined as follows:

I A 0 --- 0 0O O
AT A -~ 0 0 O

0 0 I A O
o o o0 --- A I A
o 0 o0 --- 0 A I

among them, [ is the identity matrix, A is the adjacency
matrix of the spatial graph, and A is calculated as follows:

Ay = { L

0,
where v; represents the ¢ node in the traffic network. Algo-
rithm 1 describes the construction of ASTCM in detail.

if v; connects to v;
otherwise

3

Algorithm 1 Construction of ASTCM

N: the number of Nodes
m: the number of spatial graphs, m € [2, S]
D: the distance between nodes
W, A: N x N matrix,initial to zero matrix
e: the thresholds
Output: ASTCM: a sparse matrix for graph convolution
for each row in D do
i, §, distance + (row[0] row[l1] row[2])
Calculate W; ; as Eq. (15)
end for
A < Construct A as Eq. (3)
ASTCM < mN x mN zero matrix
ASTCM < Generate ASTCM as Eq. (2)

Input :

B. Adaptive Asynchronous Spatial-Temporal Correlation

Weight Matrix

In the transportation network, the strength of asynchronous
spatial-temporal correlation between nodes is different. Specif-
ically, affected by the factors such as the distance between
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nodes and road conditions, the impact of each node on other
nodes is non-fixed and difficult to quantify. The adjacency
matrix A in the ASTCM only describes the connectivity of
the nodes. It cannot accurately describe the strength of the
asynchronous spatial-temporal correlation between nodes. To
solve this problem, we constructed an Adaptive Asynchronous
Spatial-Temporal Correlation Weight Matrix to add adaptive
weights to the asynchronous spatial-temporal correlation ma-
trix. The adpASTCWM does not require any prior knowledge
and will be used as a model parameter in the training process
of the model. The strength of the asynchronous spatial-
temporal relationship between nodes is learned end-to-end

through stochastic gradient descent.

To reduce the redundant parameters in the model and
improve the calculation efficiency of the model, we can
use the ASTCM A to initialize the adpASTCWM. The
initialization rule can be described as:

Any non-zero value,
A(adp)iyj = { 0,

In other words, we force the model to only focus on
the strength of asynchronous spatial-temporal relationships
between nodes that have adjacency relationships.

if A(gyi,; equal to 1
otherwise

(C))

C. Asynchronous Spatial-Temporal Graph Convolution

Based on the ASTCM and the adpASTCWM, we define the
convolution operation of ADGCN in the spatial domain. For
each node, the convolution operation aggregates three types of
features: the features of the node itself at current time step, the
features of this node at other time steps, and the features of
other nodes that are spatially adjacent at other time steps. We
call the latter two features asynchronous spatial-temporal fea-
tures. We perform a linear weighted combination of these three
features in the convolution operation, and the weight value is
the parameter value learned in the adpASTCWM. Then we
apply a linear transformation to the aggregated feature matrix.
The graph convolution operation can be expressed as:

hay = AXW +b )
A = Agaap) © A ©)

where ® means element-wise multiplication, X € RMNXC
is the input of the convolutional layer, W € REXC" and
b € RY are learnable parameters. In order to expand the
receptive field of convolution operation, we stack multiple
layers of ASTGC layers together to form an ASTGC block, as
shown in the Fig. 4. In addition, to solve the over-smoothing
problem caused by the deep graph convolution network, we
designed a gated fusion layer to fuse the results of each layer of
spatial-temporal convolution operation, as shown in Fig. 5. We
denote the output of the spatial-temporal graph convolutional
layer of the 1,2,...,1 layer as h(y), ), ..., hq) in the gated
fusion layer, the output h(;) of each convolutional layer is
first cropped. Only the node features at the last time step are
retained, and then the cropped features are connected. We use
a linear transformation with a gating mechanism to fuse them:

by = g ([he(1)s he@)s - - - s he@y )W + be) %)
hg =0 ([hc(1)7 hc(2)7 ey hc(l)]Wg + bg) (8)
hav = hyp© hg ©

where We € RlClXC/,Wg S Rlc’xcl,bf € RY and bg €
RC" are learnable parameters, heqy € RN*C" is the cropped
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output feature, [-] represents concatenation operation, g(-) is
the activation function, such as relu or tanh, o (+) is the sigmoid
function, which determines the ratio of information input to
the next layer, and ® is element-wise multiplication.

ASTGC Block

Fig. 4: Asynchronous Spatial-Temporal Graph Convolution
Block.

h(l) h(l) h(l)
[Time Step 1| |[Time Step 1] Time Step 1
[Time Step 2| |[Time Step 2| ... Time Step 2
[Time Step m| |[Time Step m| [Time Step m|

!
%@;
he

Fig. 5: Gated Fusion Layer.

D. Asynchronous Spatial-Temporal Dilated Causal Convolu-
tion Layer

During the process of constructing ASTCM, it is not the
optimal choice to connect all spatial graphs in time steps
together (m = S), especially if the scale of spatial graphs
is huge. The performance of the model will decrease with the
increase of the number of connected spatial graphs because
the large ASTCM needs a huge parameter matrix as the
convolution kernel, which will lead to the model spending
much time on the convolution operation. Simultaneously, too
many parameters will make the complexity of the model far
greater than the complexity of the problem we want to model,
thus leading to the occurrence of the overfitting phenomenon.
However, the ASTCM constructed with fewer spatial graphs
can only extract the short-term asynchronous spatial-temporal
correlation of traffic data. It cannot extract the long-term
asynchronous spatial-temporal correlation of traffic data.

/. Dilation = 4
‘ Dilation = 2
o O/ I YL T

Fig. 6: 1D dilated causal convolution with kernel size 2.

Inspired by applying 1D dilated causal convolution to
extract time dependence in Graph WaveNet, we generalized
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the 1D dilated causal convolution operation, designed and im-
plemented the ASTDC layer. As shown in Fig. 6, the receptive
field of the model can increase exponentially by increasing the
dilated factor of each layer in increasing order. We generalize
the dilated causal convolution to the asynchronous spatial-
temporal graph convolution operation, as shown in Fig. 7.

Fig. 7: Asynchronous Spatial-Temporal Dilated Causal Con-
volution.

At each layer, the ADGCN model determines the number
of spatial graphs participating in the construction of ASTCM
according to the value of m. In addition, the model chooses
to skip the spatial graph at which time step according to the
size of the dilated factor d. Since the spatial-temporal pattern
presented by traffic data in each period is not the same, in
each layer of ASTDC layer, we use multiple ASTGC blocks
to extract the information in different asynchronous spatial-
temporal correlation graphs:

hiyy = ASTGCBlock;(X[t,t —d x 1,...,t —d xm])  (10)

where h'j represents the output of the i-th ASTGC block of

this layer, and the output of the ASTDC layer is obtained by
stacking all the outputs of the ASTGC block of this layer
together:

H* = Stack [h}w,hﬁh...,hfﬂxm] (11)

where H?° is the output of the s ASTDC layer. We stack mul-
tiple ASTDC layers to extract a large range of asynchronous
spatial-temporal correlations without a sharp increase in net-
work depth. At the same time, the calculation time of the
model is also greatly reduced. Subsequently, we built an output
layer to generate predicted values for 7' time steps.

E. Output Layer

We utilize a two-layer fully connected network as the output
layer of the ADGCN model. The model can output the result
of T' time steps at one time instead of iteratively calculating
and generating T steps. Therefore, the prediction output of
each time step does not depend on the prediction output of
the previous time step, avoiding the accumulation of prediction
errors, as shown below:

§=ReLU (H'""W1 + b1 ) - W2 + b (12)

where j € RN*T

Hlast c RN xTo xC’

is the predicted output of the model.

is generated from the last layer of
ASTDC layer, the value of T, is related to the depth of the
asynchronous spatial-temporal dilated convolutional network,
the dilated factor d of each layer, and the number of connected
spatial graphs m. Wy € RT-xC'*D W, € RP*T by € RP,
by € RY are trainable parameters.
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F. Framework of ADGCN

As shown in Fig. 2, we use a layer of full connection
layer as the input layer of the ADGCN model. The input
data is first transformed into a high-dimensional space. The
asynchronous spatial-temporal correlation in the data is then
extracted through the multi-layer ASTDC layer. Each of
ASTDC layers is composed of S® —d® ASTGC blocks, which
are used to extract the characteristic information of each
asynchronous spatial-temporal graph respectively, where S*
and d® are the input sequence length and dilated factor of
this layer, respectively. Finally, the output of the multi-layer
ASTDC layer is sent to the output layer composed of two
fully connected layers to produce the predicted output of T

time steps.
We select Mean Absolute Error (MAE) as the loss function
of ADGCN, which is defined by

t+T N D

L= S5 S RD - xQ] alel a3)

s=t+1n=1d=1
where T, N, D represent the number of predicted time steps,
the number of nodes in a spatial graph G, and the dimension
of features, respectively. To avoid overfitting, we apply the 1.2
regularization term A||©||2 and A is a hyperparameter. Detailed
process of ADGCN is shown as Algorithm 2.

Algorithm 2 ADGCN

N: the number of Nodes
m: the number of spatial graphs, m € [2, 5]
ASTCM: generated by Algorithm 1
L: the number of ASTGC layers
S, T input / output sequence len%th
X: traffic data sequence, X € RY*SxD
dilations: the list of dilation factors
Output: Y the predicted output of the model, Y € RV*7
adpASTCW M < initial by ASTCM
X < Perform a linear transformation on X
for (| =1,2,....L do
d; < dilations;
fori=1,2,...5—di x (m—1) do
Perform the ASTGC Block as Egs. (5) — (10)
end for
H? < Stack the results of ASTGC Blocks as Eq. (11)
X < Hs
S<—S—dl><(m—1)
end for
Hlast «— X
Y < Perform the output layer as Eq. (12)

Input :

V. EXPERIMENTS

We conducted experiments on three real-world datasets and
verified the effectiveness of the ADGCN model by comparing
it with several traditional traffic flow prediction models, and
the latest traffic flow prediction model using deep learning.

A. Dataset Description

We validated our model on three public traffic datasets,
PeMS04, PeMS08 and METR-LA. PeMS04 and PeMSO08 are
collected in real-time every 30 seconds by Caltrans Perfor-
mance Measurement System [43]. The system deploys more
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TABLE III: Summary statistics of datasets

Data Nodes Time range
PEMS04 307 1/1/2018 - 2/28/2018
PEMSO08 170 7/1/2016 - 8/31/2016

METR-LA 207 3/1/2012 - 6/30/2012

than 39000 traffic detectors on highways in major metropolitan
areas of California. METR-LA records four months of statis-
tics on traffic speed on 207 sensors on the highways of Los
Angeles County [34]. All the above datasets are public and
can be obtained through the cited literature.

e« PeMSO04: This traffic dataset contains traffic information
collected from 3848 detectors on 29 roads in the San
Francisco Bay Area, and the time is from January to
February 2018.

o PeMSO08: Traffic data in the San Bernardino area includes
1979 detectors on 8 roads. The data were collected from
July to August 2016.

« METR-LA: This traffic dataset collected from loop de-
tectors in the highway of Los Angeles County. The data
was collected from Mar 1st 2012 to Jun 30th 2012.

Table III shows the details of the processed datasets. In
these three datasets, we aggregate the average vehicle speed
readings into 5 minutes window. In the experiment, Z-score
normalization is applied to the aggregated datasets; that is, the
average value of the data is set to 0, and the standard deviation
is 1. The formula is given as follows:

_X-X

Z
S

(14)
where X is the sample to be processed, X represents the
average value of the sample, and S is the standard deviation
of the sample. In addition, we divide 70% data into training
set, 20% data into test set, and the remaining 10% data is used
for validation set. We calculated the distance of the paired road
network between the sensors and removed the detectors that
were too close, and then used the threshold Gaussian kernel
[38] to construct the adjacency matrix. The calculation formula
is given as follows:

d?;
0

dij>€

15)

where d;; represents the distance between detector ¢ and
detector j, o is the standard deviation of the distance, and
€ is the threshold. The larger the W;;, the more relevant the
vertex ¢ and the vertex j. The values of o and € are the same
as the settings in Graph WaveNet [6].

B. Baselines

We compare ADGCN with the following models.

o« HA [44]: The Historical Average method, which models
the traffic flow as a periodic process, and uses the
weighted average of the previous periods as the predicted
value.

e SVR [45]: Support Vector Regression. It is a variant
method of support vector machine model. In this article,
we use linear kernel function for traffic prediction.
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o FNN: Feedforward Neural Network, using two hidden
layers and L2 regularization.

e FC-LSTM [46]: Multi-layer long short-term memory
network for sequence-to-sequence learning

o T-GCN [33]: Temporal Graph Convolutional Network, a
deep learning model that combines graph convolutional
network and gated recurrent unit for traffic prediction.

« DCRNN [34]: Diffusion Convolutional Recurrent Neural
Network, this method models the traffic flow as a diffu-
sion process on a directed graph.

o Graph WaveNet [6]: A powerful model which combines
diffusion convolution and adaptive adjacency matrix to
extract spatial dependence, and uses dilated causal con-
volution to deal with temporal dependence.

o ISTD-GCN [35]: [Iterative Spatial-Temporal Diffu-
sion Graph Convolutional Network, this method syn-
chronously models the temporal dependence and spatial
dependence in traffic data.

o GMAN [47]: Graph Multi-Attention Network, this model
adapts an encoder-decoder architecture, and uses an atten-
tion mechanism to model the impact of spatial-temporal
factors on traffic conditions.

C. Evaluation Metrics

We use Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE) and Mean Absolute Percentage Error (MAPE)

to evaluate the prediction performance of the ADGCN model:
(1)Mean Absolute Error

1< .
MAE—ngyi—yz| (16)
(2)Root Mean Squared Error
DR o P
RMSE =, | ; (yi — 9s) (17)
(3)Mean Absolute Percentage Error
. 100% ~— Ui — Yi
MAPE_f—E—E:Aj;— (18)

i=1

where y; and ¢; are the real traffic information and the

predicted value of the model at i time step, respectively. n

is the number of time steps. Specifically, these three metrics
are used to measure the prediction error.

D. Model Parameters Selection

There are six important hyperparameters of the ADGCN
model: learning rate, batch size, training epoch, the number of
connected spatial graphs in the asynchronous spatial-temporal
graph, the dilated factor, and the number of ASTGC layers in
the ASTGC block. In the experiment, we apply grid search to
adjust and set the learning rate to 0.001, the batch size to 32,
and the training epoch to 200.

The remaining three parameters are the core parameters of
ADGCN. Their different values may significantly affect the
prediction performance of the model. We conducted detailed
experiments to select the optimal values of these three param-
eters.
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Fig. 8: Comparison of predicted performance over different number of connected spatial graphs in the training and validation
set based on PeMS04 dataset. (a) MAE and RMSE on validation set. (b) MAE and MAPE on validation set. (¢) MAE and
RMSE on training set. (d) MAE downward trend on the validation set during training.
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Fig. 9: Comparison of predicted performance over different number of connected spatial graphs in the training and validation
set based on PeMSO0S8 dataset. (a) MAE and RMSE on validation set. (b) MAE and MAPE on validation set. (c) MAE and
RMSE on training set. (d) MAE downward trend on the validation set during training.

1) The Number of Connected Spatial Graphs: In our ex-
periment, for the PeMS04 dataset, we connect 2, 3, 4, 5, 6,
7, and all 12 spatial graphs, respectively, and analyze their
influence on the performance of the model. Fig. 8§ compares
the performance of the ADGCN model on the PeMS04 dataset
when connecting different numbers of spatial graphs. In Fig.
8(a), Fig. 8(b) and Fig. 8(c), the horizontal axis represents
the number of connected spatial graphs, and the vertical axis
represents the change of different metrics. The horizontal axis
in Fig. 8(d) represents the training epochs, and the vertical axis
represents the MAE change trend on the validation set. It can
be seen from Fig. 8§(a) and Fig. 8(b) that when the number of
connected spatial graphs is smaller, the prediction performance
of the model is better. This trend is evident in Fig. 8(c). This
is mainly because a too large asynchronous spatial-temporal
graph will cause the model to require more parameters, which
will increase the complexity of the model, and as a result,
overfitting occurs. Fig. 8(d) shows that when the number
of connected spatial graphs is 2, the model only needs to
be trained for 98 epochs to converge. When the number of
connected space graphs increases, the model becomes more
difficult to train. In summary, we connect 2 spatial graphs to
form an asynchronous spatial-temporal graph.

Similarly, the results on the PeMS08 dataset are shown in
Fig. 9. We still choose to connect two spatial graphs to form
an asynchronous spatial-temporal graph. For the METR-LA
dataset, we set the number of connected spatial graphs to 4.

2) Dilated Factor: Using dilated causal convolution, the
receptive field of the model can increase exponentially as
the number of convolutional layers increases. However, since
the dilated causal convolution will skip a part of the spatial
graph for feature extraction, some information may be lost.
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Therefore, it is very important to choose an appropriate dilated
factor. We try to keep the model in balance between training
time and prediction performance. Specifically, in our experi-
ment, for PeMS04 dataset, we take 3 sets of dilated factors for
comparison, which are [2,2,2,2], [3,3,3] and [1,2,3,1,2,2].
The experimental results are shown in Fig. 10.

Fig. 10(a), Fig. 10(b) and Fig. 10(c) respectively show
the influence of different dilated factors on the prediction
performance of the ADGCN model. Fig. 10(d) shows the
influence of different dilated factors on the prediction time
and reasoning time of the model. From the Fig. 10, it can be
obviously found that when the dilated factor is [2, 2,2, 2], the
prediction performance and time consumption of the model
have achieved the best results.

Fig. 11 shows the experimental results of using three groups
of dilated factors [1,2,1,2,2],[1,2,3,4] and [1,2,3,1,2,2] on
the PeMSO8 dataset. Considering the calculation time and
prediction performance, we set the dilated factor as [1,2, 3, 4]
for the PeMSO08 dataset. For the METR-LA dataset, we set the
dilated factor to [1,2].

3) The Number of ASTGC Layers: For a node on the
graph, there are many types of neighbors. As shown in Fig.
12, take the red node as an example, the green nodes are
its first-order neighbor, and the black nodes are the second-
order neighbor of the red node. And so on, the yellow nodes
are the third-order neighbor of the red node. In our model
ADGCN, each additional layer of the ASTGC layer in the
ASTGC block can aggregate one more order of neighbor
information. For the PeMS04 dataset, We select the number
of ASTGC layers from 2,3,4,5,8,10,12 and analyze the change
of prediction performance. The experimental results are plot-
ted in Fig. 13(a), the horizontal axis represents the number
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Fig. 12: K-order neighbors of nodes on the graph.

of ASTGC layers, and the vertical axis represents different
evaluation metrics. We can observe that when the number
of layers is 3, the MAE, RMSE and MAPE errors of the
model are the smallest. When increasing the ASTGC layer,
the prediction performance of the model firstly increases and
then decreases sharply. This is because, in the beginning, the
model’s expressive ability is low, and it is unable to model the
spatial-temporal dependence of the data fully. As the number
of ASTGC layers increases, the representations of the nodes in
ADGCN are inclined to converge to a certain value and thus
become indistinguishable [48]. Such a phenomenon is called
over-smoothing [49]. Therefore, we set the number of ASTGC
layers to 3 in our experiments on the PeMS08 dataset.

In addition, the experimental results on the PEMSOS8 dataset
are shown in Fig. 13(b). It can be seen that the prediction
performance is the best when the number of ASTGC layers is
3. For the METR-LA dataset, we set this parameter to 4.

E. Experimental Results

First, we evaluate the overall prediction performance of
ADGCN and other benchmark models. Table IV shows the
average values of MAE, RMSE, and MAPE of various models

- MAE —o—RMSE —+—MAPE *—MAE —o—RMSE —+~MAPE

e 20 e —

() (b)

Fig. 13: The number of ASTGC layers. (a) 60-minute predic-
tion performance on PeMS04 dataset. (b) 60-minute prediction
performance on PeMS08 dataset.

for multi-step traffic flow predictions on PeMS04, PeMS08
and METR-LA datasets. The bold part indicates that the model
has the best performance. It can be seen that the ADGCN
model is superior to almost all other prediction models,
including traditional methods and the latest deep learning
methods.

In addition, we compare the short-term, medium-term, and
long-term prediction performance of various models. Table
V shows the performance of the ADGCN model and other
benchmark models for 15 minutes, 30 minutes, and 60 minutes
prediction tasks on PeMS04, PeMS08 and METR-LA datasets.
As shown from the table, the ADGCN model has achieved
the best prediction performance for almost all prediction
horizons, especially in terms of 60-minute prediction perfor-
mance, which is greatly improved compared with other bench-
mark models. On the METR-LA dataset, the performance
of ADGCN and ISTD-GCN are very similar, but the time
efficiency of ADGCN is better than that of ISTD-GCN, which
we will analyze later.
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TABLE IV: Comparison of average prediction errors of different models

Models PEMS04 PEMS08 METR-LA
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
HA 28.22 41.85 19.99 23.08 34.18 14.52 4.16 7.80 13.0
SVR 33.79 5251 2031 28.20 43.62 15.54 525 11.02 12.7
FNN 24.41 37.18 17.47 19.36 29.55 13.66 4.23 8.26 122
FC-LSTM 23.76 36.35 17.46 18.52 28.44 11.99 3.86 7.40 11.23
T-GCN 21.42 32.91 15.71 17.98 26.98 14.37 3.89 6.57 10.56
DCRNN 21.76 33.99 14.70 16.28 25.40 10.52 3.17 6.47 8.86
Graph Wavenet 21.66 34.26 14.85 17.14 27.59 11.06 3.09 6.24 8.42
ISTD-GCN 21.68 3532 15.63 18.51 28.09 12.36 2.80 5.0 7.59
GMAN 21.54 33.28 16.30 16.26 25.10 12.17 3.06 6.29 8.51
ADGCN 19.55 31.39 12.81 15.90 24.46 10.28 2.79 5.49 7.77
TABLE V: Comparison of prediction errors of different models at multiple time steps
Data Models MAE RMSE MAPE(%)
15min 30min 60min 15min 30min 60min 15min 30min 60min
HA 28.22 2822 28.22 41.85 41.85 41.85 19.99 19.99 19.99
SVR 29.60 31.54 40.23 47.08 48.45 62.02 17.40 19.11 24.43
FNN 22.01 22.90 30.69 32.88 35.32 4633 16.67 16.06 21.51
FC-LSTM 2225 22.04 29.18 3322 34.33 44.62 16.68 15.77 2035
PEMSO4 T-GCN 19.56 20.96 23.75 30.58 32.38 35.78 13.76 15.04 18.33
DCRNN 19.20 21.22 24.87 30.44 33.27 38.28 12.79 1421 17.11
Graph Wavenet 18.67 21.37 26.13 29.88 33.87 40.73 12.61 14.54 18.48
ISTD-GCN 20.15 21.33 22.94 32.88 34.54 38.08 14.78 15.34 16.39
GMAN 20.06 21.37 24.13 3112 33.11 36.90 15.12 16.07 18.36
ADGCN 18.38 19.36 20.90 29.43 30.94 3332 12.24 12.78 13.58
HA 23.08 23.08 23.08 34.18 34.18 34.18 14.52 14.52 14.52
SVR 23.15 25.90 35.56 35.71 40.21 54.94 13.23 14.29 19.11
FNN 1735 18.03 24.72 25.55 28.04 37.83 12.87 12.79 16.54
FC-LSTM 17.54 16.90 23.17 26.16 26.51 3543 11.43 10.94 14.90
PEMSO8 T-GCN 16.38 18.01 19.55 24.72 27.11 29.11 12.69 14.58 15.86
DCRNN 14.50 15.93 18.42 22.67 25.01 28.53 9.31 10.26 11.98
Graph Wavenet 14.84 16.61 19.98 23.73 26.87 32.18 9.60 10.53 13.06
ISTD-GCN 16.58 18.14 20.23 2521 27.61 30.56 11.98 13.26 15.02
GMAN 1521 15.98 18.40 23.44 24.86 28.17 11.29 11.87 13.81
ADGCN 15.02 15.68 16.81 22.95 24.15 26.03 9.90 10.21 10.73
HA 4.16 4.16 4.16 7.80 7.80 7.80 13.0 13.0 13.0
SVR 3.9 5.05 6.72 8.45 10.87 13.76 9.3 12.1 16.7
FNN 3.99 4.23 4.49 7.94 8.17 8.69 9.9 129 14.0
FC-LSTM 3.44 3.77 4.37 6.30 7.23 8.69 9.6 10.9 132
METRLA T-GCN 3.46 3.80 443 5.68 6.29 7.20 8.99 10.40 12.29
DCRNN 2.77 3.15 3.60 5.38 6.45 7.59 73 8.8 105
Graph Wavenet 2.69 3.07 3.53 5.15 6.22 7.37 6.90 8.37 10.01
ISTD-GCN 2.50 2.81 3.10 4.40 5.03 5.68 6.50 7.37 8.91
GMAN 2.77 3.09 3.44 5.49 6.42 735 7.35 8.62 10.04
ADGCN 2.50 2.79 3.19 4.70 5.50 6.61 6.63 771 9.44

1) Prediction Accuracy Analysis: We can find that the
methods based on deep neural networks, such as FNN, FC-
LSTM, T-GCN, DCRNN, Graph WaveNet, ISTD-GCN, and
our model ADGCN, are superior to the traditional linear meth-
ods including HA and SVR in multi-step traffic flow prediction
tasks. This is mainly due to the complex and dynamic temporal
dependence in traffic data. Traditional models such as HA
and SVR are difficult to deal with this temporal dependence.
FC-LSTM only considers the temporal correlation of traffic
information and does not utilize the spatial dependence in the
spatial-temporal network. Hence, its prediction performance
has a large gap compared with the spatial-temporal models
such as T-GCN, Graph WaveNet, and ADGCN. This shows
that the modeling of spatial dependence is crucial for the traffic
prediction task.

We plot predicted values v.s real values of ADGCN model
on the PeMS08 dataset in Fig. 15 and Fig. 16. Specifically, we
randomly select 4 sensor nodes and arbitrary 864 continuous-
time steps (3 days) to compare the real value with the predicted

value. The comparison result is shown in Fig. 15. In addi-
tion, in order to evaluate the overall prediction performance
of the model on the traffic network, we compare the real
average velocity of all detector nodes randomly selected in
864 continuous-time steps with the average speed predicted
by our model, as shown in Fig. 16.

It can be seen that our model ADGCN can extract local
features well and adapt to the complex speed change patterns
of different nodes. Specifically, in the traffic network, the speed
of different road sections has different variation patterns. For
example, the change of node speed in Fig. 15(a) is relatively
stable, while the node speed in Fig. 15(b), Fig. 15(c) and Fig.
15(d) fluctuates greatly. ADGCN can extract complex velocity
change patterns from different nodes, thus achieving better
prediction performance. The traffic flow often shows obvious
periodicity (early peak, evening peak, and other). ADGCN can
identify the beginning and end time of the peak period and
make a prediction result similar to the actual traffic speed.
From a macro perspective, as shown in Fig. 16, ADGCN can
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accurately predict the traffic speed of the entire traffic network.

2) Long-term Prediction Ability Analysis: We found that
the time step of prediction has a more significant impact
on the prediction performance of the model. The prediction
accuracy of some models will drop sharply as the prediction
step increases. As shown in Table V, the performance of our
model ADGCN and other benchmark models on long-term
prediction tasks is lower than short-term prediction tasks. Note
that since the HA method does not rely on short-term data, its
prediction performance does not change with a small increase
in the prediction time step. Fig. 14 shows the MAE and MAPE
trend of the T-GCN, ISTD-GCN, Graph WaveNet, and our
ADGCN model over different time steps on PeMS04 and
PeMSO08 datasets. It can be seen from the Fig. 14 that no matter
how much the prediction time step increases, the ADGCN
model almost always obtains the best prediction performance
and the prediction errors have less tendency to change. On
the contrary, the performance of other models on long-term
prediction tasks is unsatisfactory. This shows that our ADGCN
model is not sensitive to the prediction horizons. Accurate
long-term traffic prediction can provide a reliable basis for
traffic planning tasks, and our ADGCN model can accomplish

this well.

3) Computation Time Analysis: We compared the computa-
tion time of ADGCN with DCRNN, GMAN, and ISTD-GCN
on the METR-LA dataset in Table VI. ADGCN runs faster
than DCRNN, GMAN and ISTD-GCN. Especially ISTD-
GCN, its runs ten times slower than ADGCN in training
and inference. The time cost of DCRNN is mainly used for
iterative calculation based on RNN components. For GMAN, it
takes a lot of time to calculate spatial attention and temporal at-
tention. In addition, the demand for GPU resources is relatively
large. The iterative strategy in ISTD-GCN requires T-1 (T is
the length of the input time series) iterative calculation, which
will increase the computation time of the model. In ADGCN,
our ASTCM and adpASTWCM are sparse, hence sparse-dense
matrix multiplication can be used to reduce the computation
time of graph convolution. Eq. (19) calculates the sparsity of
these two matrices. K is the number of zero elements in the
matrix, M X N is the total elements of the matrix. The sparsity
of ASTCM used in METR-LA is 0.97. In addition, ASTDC
also avoids unnecessary redundant calculations, which greatly
reduces the computation time of the model. We discussed the
effect of this component in the ablation experiment.

— KO
T MxN

Sm 19)

TABLE VI: The computation cost on the METR-LA dataset

Model Training(s/epoch) Inference(s)
DCRNN 249.31 18.73
GMAN 611.20 28.20
ISTD-GCN 890.40 52.31
ADGCN 61.20 7.27

F. Ablation Experiments

We designed and conducted ablation experiments to verify
the effectiveness of several key components, including the
ASTCM, the adpASTCWM, and the ASTDC. Table VII
shows the average prediction performance of ADGCN and
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its multiple variants on the PeMS04, PeMS08 and METR-LA
datasets. Fig. 19 shows the MAE trend of these models over
different time steps on METR-LA.

1) Effect Analysis of Asynchronous Spatial-Temporal Cor-
relation Matrix: To verify the effect of the ASTCM in
ADGCN, we replace it with a standard spatial-temporal cor-
relation matrix, called ADGCN-noASTM, which only focuses
on the spatial information of different nodes in the same
time step and the temporal information of the same node
in different time steps. It can be seen from Table VII that
compared with the ADGCN-noASTM model, the ADGCN
model achieves a lower prediction error. This result means that
the ASTCM can effectively extract the asynchronous spatial-
temporal correlation from traffic data, proving the effectiveness
of the ASTCM.

2) Effect Analysis of Adaptive Asynchronous Spatial-
Temporal Correlation Weight Matrix: To verify the effect of
the adpASTCWM, we replace it with a fixed unit matrix,
which we call ADGCN-noAdpASTWM. It can be seen from
table VII that the adpASTWM greatly improves the prediction
performance of the model. Due to the high complexity of the
spatial-temporal correlation of traffic data, fixed weight can not
reflect the complex asynchronous spatial-temporal correlation
between different nodes.

In Fig. 17 and Fig. 18 we further study the asynchronous
spatial-temporal correlation in ADGCN. Fig. 17 is the ASTCM
used by ADGCN on the METR-LA dataset. In the parameter
selection experiment above, we connected four spatial graphs
to form an asynchronous spatial-temporal graph. Fig 18 is a
part of adpASTCWM on METR-LA. Here, Fig. 18(a) is in the
initial state, Fig. 18(b) is the state after training. According
to our definition, in ASTCM, areas I only pay attention to
the information of the node itself in their respective time
steps. Areas A represents the asynchronous spatial-temporal
correlation between nodes.

We can draw the following conclusions from Fig. 18 :
(1) ADGCN can effectively capture the asynchronous spatial-
temporal correlations in traffic data. (2) the strength of asyn-
chronous spatial-temporal correlation among nodes is differ-
ent. Some nodes influence multiple nodes, while some nodes
hardly interact with other nodes. (3) The weights of nodes in
spatial graphs of different time steps are also different. For
example, in Fig. 18(b), the weight value of the heatmap in
different area is quite different. Therefore, the ASTCM and ad-
PASTCWM components can reflect the complex asynchronous
spatial-temporal correlation in traffic data. In addition, it can
be seen from Fig. 19 that these two components play an
essential role in multi-time step prediction. The results of
ablation experiments confirmed the effectiveness of these two
components.

3) Effect of the Asynchronous Spatial-Temporal Dilated
Causal Convolution: We removed the ASTDC in ADGCN
to verify the effectiveness of this component. Specifically,
we use an iterative calculation method similar to RNN to
extract asynchronous spatial-temporal correlations in the data
called ADGCNe-iter. The experimental results are shown in
Table VIII. We compared the 60-minute prediction error
and computation time of ASTDC and iterative calculation
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Fig. 14: Long-term prediction ability. (a) MAE trend of ADGCN model and other models on PeMS04 dataset. (b) MAPE trend
of ADGCN model and other models on PeMS04 dataset. (c) MAE trend of ADGCN model and other models on PeMS08
dataset. (d) MAPE trend of ADGCN model and other models on PeMS08 dataset.
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Fig. 15: Comparison of the predicted values and real values of 4 randomly selected nodes(a — d) in 864 continuous time steps.

TABLE VII: Ablation Experiments

Models PEMS04 PEMS08 METR-LA
MAE  RMSE  MAPE(%) MAE  RMSE  MAPE(%) MAE  RMSE  MAPE(%)
ADGCN-noASTM 2015 3340 1320 1728 2673 11.21 2.90 5.66 7.89
ADGCN-noAdpASTWM ~ 20.78 34.90 13.99 2246 3266 14.75 3.06 6.04 8.80
ADGCN 1955 3139 12.81 1590 2446 10.28 2.79 5.49 7.77
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Ii1 | A Fig. 18: Heatmap of adpASTCWM with 20 nodes in METR-
LA. (a) Initial state. (b) Learned weights.
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Fig. 17: ASTCM for METR-LA.

on the PEMS04 dataset. It can be seen that the prediction
performance of ADGCN is better than that of ADGCNe-iter.
Moreover, no matter the training time or the inference time,
ADGCN is far less than ADGCNe-iter. This proves that the
ASTDC can effectively model the spatial-temporal dependence
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Fig. 19: MAE trend in ablation experiments on METR-LA.

of the data and greatly reduce the calculation time of the
model.
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TABLE VIII: Asynchronous Spatial-Temporal Dilated Causal
Convolution v.s iterative calculation

Model MAE RMSE MAPE Training(s/epoch) Inference(s)
ADGCN 20.9 33.32 13.58 25.05 2.93
ADGCN-iter 21.67 3441 14.52 79.95 9.52

G. Robustness Experiments

In the real world, the data collection process will inevitably
produce noise. We test the robustness of the ADGCN model
through perturbation analysis experiments.

We added two common random noises to the data. The
first one is random noise that obeys the Gaussian distribution
N € (0, 02), where o € (0.2,0.4,0.8, 1, 2); the second type is
random noise that obeys the Poisson distribution P(\), where
A € (1,2,4,8,16). The experimental results are shown in
Fig. 20. Fig. 20(a) shows the results before and after adding
Gaussian noise to the PeMS04 data set, with the horizontal
axis indicating that the o, the vertical axis is the value of
each evaluation metric. Similarly, Fig. 20(b) shows the results
before and after adding Poisson noise to the PeMS04 data
set. It can be seen that: (1) the decline of the prediction
performance of the ADGCN model after adding noise is
negligible; (2) regardless of the noise distribution, the change
of each evaluation metric is not obvious. This proves that the
ADGCN model is robust and can overcome the disturbance
caused by noise.

Gaussian Perturbation Polsson Perturhation
as RIS M MAE m MAPE
= RMISE ® MAE = MAPE

nonoise 0.2 04 08 1

(a) (b)

Fig. 20: Robustness analysis. (a) Performance changes before
and after adding Gaussian noise to the PeMS04 data set. (b)
Performance changes before and after adding Poisson noise to
the PeMS04 data set.

VI. CONCLUSION

In this paper, we designed an ASTGC operation to mine
the asynchronous spatial-temporal relationship in the trans-
portation network. In addition, we extended the 1D dilated
causal convolution to the graph convolution network (called
ASTDC), which can learn long-term dependencies on data.
Finally, the Asynchronous Dialted Graph Convolutional Net-
work (ADGCN) model was proposed to handle traffic flow
prediction issues with the above two tricks. Experiments on
three real traffic datasets show that the prediction performance
of our proposed model is better than other existing traffic data
prediction methods, especially in the performance of long-
term predictions. Moreover, this model is also suitable for
other scenarios with asynchronous spatial-temporal correla-
tions, such as social networks and recommendation systems.
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In the future, we will further improve the model to achieve
real-time prediction of urban traffic flow.
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