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Shapelet-transformed Multi-channel EEG Channel Selection

CHENGLONG DAI and DECHANG PI, Nanjing University of Aeronautics and Astronautics, China

STEFANIE I. BECKER, The University of Queensland, Australia

This article proposes an approach to select EEG channels based on EEG shapelet transformation, aiming

to reduce the setup time and inconvenience for subjects and to improve the applicable performance of

Brain-Computer Interfaces (BCIs). In detail, the method selects top-k EEG channels by solving a logistic

loss-embedded minimization problem with respect to EEG shapelet learning, hyperplane learning, and EEG

channel weight learning simultaneously. Especially, to learn distinguished EEG shapelets for weighting con-

tributions of each EEG channel to the logistic loss, EEG shapelet similarity is also minimized during the

procedure. Furthermore, the gradient descent strategy is adopted in the article to solve the non-convex opti-

mization problem, which finally leads to the algorithm termed StEEGCS. In a result, classification accuracy,

with those EEG channels selected by StEEGCS, is improved compared to that with all EEG channels, and

classification time consumption is reduced as well. Additionally, the comparisons with several state-of-the-

art EEG channel selection methods on several real-world EEG datasets also demonstrate the efficacy and

superiority of StEEGCS.
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1 INTRODUCTION

Electroencephalogram (EEG) signal is widely used to diagnose neuropsychiatric disorders such

as Alzheimer’s Disease (AD) [6, 24], epileptic seizure [49, 50], stroke [45], and so on [52], and it is

also practically applied in Brain-Computer Interfaces (BCIs or Human-Machine Interfaces (HMIs))
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Fig. 1. The aim of the proposed method. Problem statement presents that most researches used too many

EEG channels/electrodes to record and analyze EEG signals for BCI-based applications (i.e., wheelchair navi-

gation, robotic arm control, and EEG-based spelling, and so on), which involves some shortcomings; Method-

ology briefly explains the EEG shapelet-transformed channel selection proposed in the article, which mainly

aims to solve a logistic loss-embedded minimization function to learn distinct EEG shapelets, hyperplane,

and channel weights/contributions simultaneously. In the end, EEG channels are selected based on the chan-

nel weights; Result indicates the selected EEG channels based on their channel contributions to classification

performance, with which the efficacy of BCI-based applications can be significantly enhanced or improved.

The advantages of EEG channel selection are also summarized in the figure.

[3, 14, 48], since it can reflect the states and functions of human brain and even thewhole body [16].

For specific functions, they are activated in accordingly specific positions of brain. For instance,

the motor tasks, including motor imagery, are related to the motor cortex; the visual-based tasks

are located in the primary visual cortex area, and the frontoparietal regions correspond to decision

making [19, 47]. As one type of biological potentials that can be recorded in a non-invasive way,

many channels or electrodes of EEG acquisition equipment are commonly used in wide appli-

cations. Although more channels theoretically provide more information of brain functions, it

correspondingly causes high dimensional and redundant EEG data, since (1) as introduced above,

specific functions are activated in specific cortex of brain, channels attached on non-specific

areas are useless or redundant for analysis; (2) channels that have small contributions for EEG

analysis result in extra time or space to process and analyze, without significantly improving the

performance of analytical methods such as classification; (3) it increases the inconvenience for

subjects in BCI-based applications when using more EEG channels. Consequently, EEG channel

selection is a necessary process for its follow-up analysis, especially for BCI-based applications

in our daily life, because it can significantly reduce the impact of noisy/redundant channels

and promote the contributions of informative channels for EEG analysis. Particularly, less but

more informative EEG channels are also beneficial to BCI applications. Besides, channel selection

methods can identify informative and suitable recording sites from a large amount of sites without

any prior knowledge of specific cerebral tasks, and reduce the redundancy of EEG electrodes

for EEG signal classification without losing its performance [30]. Figure 1 briefly presents the

disadvantages (or problems) of existing researches and applications using a large number of EEG

channels. Besides, it also shows the reasons why we are going to solve the problem by listing the

advantages of EEG channel reduction for its applications. However, how to perform optimal EEG

channel selection is not a trivial task, since manually selecting EEG channels based on experts’

knowledge does not guarantee to achieve better results compared to that with all channels [7].
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In this article, we handled the challenging task of EEG channel selection for its classification. In

detail, it utilizes EEG shapelets to represent original multi-channel EEG signals and then weights

EEG channel contributions according to their logistic loss in shapelet-transformed space. Finally,

the top-k EEG channels that contribute more to the logistic loss are selected out. The procedure

of the proposed method is also roughly introduced in Figure 1. Further, the contributions of this

article are highlighted below.

• Shapelet-transformed EEG channel selection is mapped to a minimization objective func-

tion of logistic loss that simultaneously considers distinct EEG shapelets, optimal EEG chan-

nel contributions to classification performance, and good hyperplane for classifier.

• EEG shapelet similarity minimization is also considered to learn distinct EEG shapelets that

highly represent original multi-channel EEG signals.

• A novel approach of EEG channel selection is proposed that we call StEEGCS by using

gradient descent to learn EEG shapelets, channel weights, and hyperplane of classifier.

• Experimental results compared to five classic and state-of-the-art methods on 10 real-world

EEG datasets demonstrate the efficacy and superiority of StEEGCS for multi-channel EEG

channel selection.

The remainder of this article is organized as follows: The related work on EEG channel selection

is reviewed in Section 2. The proposed method is introduced in Section 3, followed by the selec-

tion algorithm StEEGCS in Section 4. Then a detailed experimentation is carried out in Section 5.

Finally, a summary of the article is presented in Section 6.

2 RELATEDWORK

Brain-Computer Interface (BCI) provides a good way for rehabilitation or a tool to improve living

quality of the disabled by using the brain to control wheelchairs or robotic arms. In BCI-based

applications, EEG classification plays an important role. Netzer et al. [38] proposed an approach

for EEG classification in BCI applications by using core sets that link to BCI with data summariza-

tion. Jafarifarmand [23] proposed a new framework that first applied an artifact rejected common

spatial pattern to reduce artifacts, and then utilized a strategy named self-regulated supervised

Gaussian fuzzy adaptive system Art to classify motor imagery EEG signals. He et al. [20] classified

motor imagery EEG signals by using a common Bayesian network constructed by related EEG

channels connected by common and varying edges. Additionally, many state-of-the-art methods

for EEG classification have emerged recently, such as References [1, 17, 27]. But the classification

accuracy and efficiency influence the performance of BCI applications in daily life. To improve the

efficiency and accuracy of EEG classification, EEG channel selection is subsequently adopted. In re-

cent decades, many studies on EEG channel selection or reduction for BCI have emerged and have

achieved a lot in this field [2]. In this article, we generally categorized these methods into three

classes: common spatial pattern-based methods, entropy/mutual information-based methods, and

classifier-embedded methods.

Common spatial pattern (CSP)-based methods [36, 51] select EEG channels based on their CSP

coefficients without deriving the features corresponding to each EEG channel. CSP-based channel

selection methods consider all the EEG channels and they are highly sensitive to EEG artifacts,

such as electrooculography and electromyography. Furthermore, as is known to all, CSP-based

methods are also suffering from over-fitting. To deal with this problem, a regularized CSP and

a sparse CSP are proposed in References [12, 28, 35] and [4], respectively, both of which aim to

remove irrelevant EEG channels and obtain sparse spatial filters for EEG classification. They all

achieved better performance than the classic CSP, but they still more or less suffer from overfitting

and artifact sensitivity inherited from CSP.
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Entropy [40, 41, 48, 53] or mutual-information-based [29, 31] methods select EEG channels by

ranking them with entropy or mutual information between EEG channels and EEG classes. In

detail, the most relevant channels according to their entropies or mutual information to corre-

sponding classes are selected out. These methods are independent from specific classifiers, but

they suffer from low accuracy due to their ignorance of correlations among different EEG chan-

nels [2].

Classifier-embedded EEG channel selection methods such as introduced in References [15, 30],

which are mainly based on the classification performance of a classifier to select EEG channels in

a way that the channels with lower contribution to classification are eliminated. Actually, these

classifier-embedded methods probably achieve higher classification accuracy than CSP or mutual-

information-based methods, since classifier-embedded channel selection methods directly con-

sider the classification accuracy into the objective function that reflects the goal of channel se-

lection for EEG classification. However, they rely on a specific classifier such as support vector

machine (SVM) [4].

Despite those various methods, selecting optimal EEG channels for BCI-based applications re-

mains a challenging task. Therefore, this article proposes an EEG shapelet-transformed approach

to select EEG channels. In detail, the original EEG data are first mapped into EEG shapelet rep-

resentation space, and then based on EEG shapelets, those EEG channels contribute more to the

logistic loss are selected. Namely, EEG channels with higher weights or contributions to the clas-

sification are probably selected. Particularly, EEG shapelets significantly influence the procedure.

To improve the efficiency and accuracy for EEG time-series classification, many approaches for

shapelet transform, learning, and selection, especially for time series [11, 21, 22] are proposed in

existing studies. Ji et al. [26] proposed an efficient shapelet discovery approach for time-series

classification based on important data points. Then, in their work [25], they proposed another

algorithm for time-series shapelet selection, which first sampled time series and then selected

shapelets efficiently based on the local farthest deviation points (LFDPs) from sampled time series,

which reduced time consumption a lot. Li et al. [32] also proposed a shapelet discovery approach

for time-series classification that was named Pruning Shapelets with Key Points (PSKP) in a way

that they applied standard deviation to search the key points of a time series and then extracted

time-series shapelets based on such key points. In their work [42], Rakthanmannon et al. presented

an efficient scalable algorithm of shapelets discovery for time-series classification, which used SAX

[39] strategy to extract shapelets of time series. Grabocka et al. [18] exploited an objective func-

tion embedded classification to learn top-k shapelets for time series. Similar to Reference [18], our

method also utilized the classification-embedded strategy to select EEG channels. It exploited a

logistic loss minimization function to simultaneously learn EEG shapelets, hyperplane, and EEG

channel weights, which built a direct correlation between relevant EEG channels and classifica-

tion performance. In other words, the proposed method can help classifier (e.g., SVM) achieve the

highest classification accuracy with selected EEG channels.

3 THE METHOD

In this section, we introduce the proposed method that is transformed to a minimization objective

function with respect to EEG shapelets, channel contributions, and hyperplane weights. Addi-

tionally, the brief procedure of the method is also illustrated in Figure 1. In detail, the proposed

method selects EEG channels based on EEG channel weights/contributions to its classification per-

formance. That is to say, to get EEG channel weights is the essential goal of the method. To the

end, the solution to achieve EEG channel weights is mainly transformed to EEG shapelet learning

in a shapelet representation space. First, a similarity minimization evaluation is brought in, which

aims to learn the most informative and distinct EEG shapelets to represent original EEG. Then, a
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hyperplane is required to learn as well, which aims to achieve a better classifier for EEG classifi-

cation along with selected EEG channels. In the method, a logistic loss function simultaneously

integrated with distinct EEG shapelet learning, hyperplane learning, and EEG channel contribu-

tion learning is eventually proposed, and its aim is to minimize the logistic loss (namely, higher

classification accuracy). As the objective function is non-convex and not differentiable, the gradi-

ent descent strategy is adopted to solve it. During the procedure, EEG shapelets, hyperplane, and

EEG channel weights are learnt iteratively with gradient descent strategy until their integrated lo-

gistic loss is locally minimized. Besides, the detailed descriptions for gradient descent-based EEG

shapelet learning, hyperplane learning, and EEG channel weight learning are, respectively, pre-

sented in detail as follows. Finally, the methodology leads to the algorithm of StEEGCS for EEG

channel selection.

3.1 EEG Shapelet

Shapelet, widely applied in time-series data mining [33, 54, 55], is a subsequence from original time

series [37]. Similarly, EEG shapelet is a continuous EEG subsequence that inherits structures from

the original EEG, and it is usually much shorter than the original EEG. Particularly, EEG shapelet

is a small subsequence, as a pattern of original EEG, that can represent the original EEG data and

separate EEG into different groups based on their distance to EEG shapelets.

Definition 3.1. Given an EEG e of lengthm, a shapelet si,l of e is a continuous subsequence with
length l ≤ m, that starts at position i . That is, si,l = ti , . . . , ti+l−1, where 1 ≤ i ≤ m − l + 1.
3.2 Shapelet-transformed Representation

Given an EEG dataset E = {ei ,e2, . . . ,en }N×C×M , where ei denotes an EEG signal of C channels

(i.e., ei = [ei,1,ei,2, . . . ,ei,c ]C×M ) withM samples for each channel, and a set of channel shapelets

S = {s1, s2, . . . , sk }K×L , where sk denotes the kth shapelet with length of L, the distance of an

EEG ei to shapelet sk is represented as Di,k ∈ D ∈ RL×K and D denotes their distance matrix or

representation. Formally, we define ei,c, j as the EEG segment of channel c and j is the starting

point of segment. Obviously, there are J = M − L + 1 EEG segments for each EEG channel. The

distance Di,k between channel shapelet sk and EEG ei can be calculated with Equation (1):

Di,k = min
j=1, ..., J

1

C × L
C∑
c=1

�
�
πk,c ·

L∑
l=1

(
ei,c, j+l−1 − sk,c,l

)2�
�
, (1)

where πk,c ∈ [0, 1) is the weight of each shapelet for a particular EEG channel, i.e., the channel

contribution with respect to a particular shapelet.

The shapelets learned from original EEG data can be transformed into a new representation

D ∈ RN×C∗×K of E ∈ RN×C×M , whereC∗ denotes the number of selected EEG channels. Obviously,

this transformation reduces the dimension of original EEG, since C∗ < C and K < C .
Since Equation (1) is not a differentiable equation [43], the softminimum function [18] is adopted

to approximately compute Di,k . In detail,

Di,k ≈ 1

C

C∑
c=1

��
�

∑J
j=1Qi,k, je

αQi,k, j

∑J
j=1 e

αQi,k, j

πk,c
��
�

(2)

and

Qi,k, j =
1

L

L∑
l=1

(
ei,c, j+l−1 − sk,c,l

)2
, (3)
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where α is a precision control parameter of the approximation function. In the case of α → −∞,
Equation (2) approximates to Equation (1). In this article, we set α = −100 according to Reference
[18].

3.3 Similarity Minimization for EEG Channel Shapelets

To learn distinct shapelets for each EEG class, we consider to minimize similarities for shapelets

within and between EEG classes, as well introduced in Reference [56]. For k shapelets, their sim-

ilarity matrix is defined as A ∈ Rk×k . Furthermore, let Ai, j ∈ A be the similarity between two

shapelets si and s j , and Ai, j can be computed as

Ai, j = e−
‖Qi, j ‖2

σ 2 , (4)

where Qi, j can be computed as similarly as Equation (3).

3.4 Learning Shapelets

The shapelet-transformed distance matrix is regarded as EEG features, and we utilize a linear

classifier to predict the approximate target variable Ŷ ∈ RN×C×K with D and linear classification

weightsW ∈ RK×V . In detail,

Yi,v =W0,v +

K∑
k=1

Di,kWk,v , ∀i ∈ {1, 2, . . . ,N }, (5)

whereW0,v ∈ R denotes the bias for thevth class. And we also use a logistic function to transform

Equation (5). Namely,

Ẑi,v =
eYi,v

1 + eYi,v
, ∀i ∈ {1, 2, . . . ,N }. (6)

Given that, EEG data commonly contain V classes, we can also transform the learning model

into a one-to-all binary problem. In detail,

Zi,v =

{
1, Zi = v
0, Zi � v

∀i ∈ {1, 2, . . . ,N }, ∀v ∈ {1, 2, . . . ,V }. (7)

Finally, we learn the model by minimizing the logistic loss between the true target Z and the

estimated one Ẑ ,

L (Z , Ẑ ) = −Z ln Ẑ − (1 − Z ) ln(1 − Ẑ ). (8)

The aim of the article is to select more important EEG channels based on EEG shapelet learning.

Hence, we aim to minimize the logistic loss by jointly learning optimal EEG shapelets S , channel
contributions π , and the optimal hyperplaneW , simultaneously,

min
S,π ,W

F =
N∑
i=1

V∑
v=1

L
(
Zi , Ẑi

)
+
λW
2
‖W ‖2 + λS

2
‖A‖2. (9)

At right of Equation (9), the first term is the logistic loss embedded with channel contribution,

which enhances the approximate target variable to approach the real one. The second term is the

hyperplane that learns the linear classifier, and the last term diversifies the EEG channel shapelets

through minimizing their similarities.
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3.5 Shapelet-transformed EEG Channel Selection

In our method, we apply gradient descent technique to solve the non-convex optimization objec-

tive function. As stated in Equation (9), it mainly contains three variables such as EEG shapelet

S , channel contribution π , and the optimal hyperplaneW . We update each of them with gradient

descent technique by, respectively, fixing the other two variables.

3.5.1 Shapelet Gradient. To analyze the gradients of the objective function with respect to S ,
we first fix π andW , and then the objective function Equation (9) degenerates to Equation (10):

min
s,π ,W

F =
N∑
i=1

V∑
v=1

L
(
Zi , Ẑi

)
+
λS
2
‖A‖2. (10)

The derivative of Equation (10) with respect to S is defined as Equation (11), which accordingly

contains two terms: the derivative of logistic loss L and the derivative of the similarity between

shapelets A with respect to EEG channel shapelet point S :

∂Fi,v
∂Sk,c,l

=
∂L
(
Zi,v , Ẑi,v

)
∂Ẑi,v

∂Ẑi,v
∂Di,k

∂Di,k

∂Qi,k, j

∂Qi,k, j

∂Sk,c,l
+ λSAk

∂Ak

∂Sk,c,l
. (11)

Subsequently, the derivative of the logistic loss L with respect to the estimated target Ẑ is

defined as Equation (12), and the derivative of the estimated target Ẑ with respect to EEG-versus-

shapelet distance D is also shown in Equation (13):

∂L
(
Zi,v , Ẑi,v

)
∂Ẑi,v

= Ẑi,v − Zi,v , (12)

∂Ẑi,v
∂Di,k

=Wk,v . (13)

Furthermore, the derivative of D with respect to a EEG channel segment distance Q is defined

in Equation (14), and subsequently, its derivative of the channel segment distanceQ with respect

to EEG channel shapelet point S is shown as Equation (15):

∂Di,k

∂Qi,k, j
=

1

C

C∑
c=1

��
�

πk,c

E21

J=M−L+1∑
j=1

(
eαQi,k, j

((
1 + αQi,k, j

)
E1 − αE2

))��
�
, (14)

where E1 =
∑J=M−L+1

j=1 eαQi,k, j and E2 =
∑J=M−L+1

j=1 Qi,k, je
αQi,k, j ,

∂Qi,k, j

∂Sk,c,l
=

2

L

(
Sk,c,l − ei,c, j+l−1

)
. (15)

As stated in Equation (11), the second term for the derivative of shapelet similarity A with

respect to EEG channel shapelet point S is then defined in Equation (16):

∂Ak

∂Sk,c,l
=
∂Ak

∂Qi,k, j

∂Qi,k, j

∂Sk,c,l
= − 2

σ 2
Qi,k, je

−
Q2
i,k, j

σ 2
∂Qi,k, j

∂Sk,c,l
. (16)

3.5.2 Channel Contribution Gradient. Since the EEG channel contribution π is embedded in

logistic loss L, it can be learnt by degenerating Equation (9) to Equation (17) while fixingW and

S :

min
s,π ,W

F =
N∑
i=1

V∑
v=1

L
(
Zi , Ẑi

)
. (17)
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Again, with the gradient descent technique, the derivative of Equation (17) with respect to π is

defined as

∂Fi,v
∂πk,c

=
∂L
(
Zi,v , Ẑi,v

)
∂Ẑi,v

∂Ẑi,v
∂Di,k

∂Di,k

∂πk,c
. (18)

In addition,
∂L
(
Zi,v ,Ẑi,v

)
∂Ẑi,v

and
∂Ẑi,v
∂Di,k

are introduced in Equations (12) and (13), respectively. So,

here we only introduce the derivative of Di,k with respect to EEG channel contribution π , which
is defined in Equation (19):

∂Di,k

∂πk,c
=

1

C

C∑
c=1

∑J
j=1Qi,k, je

αQi,k, j

∑J
j=1 e

αQi,k, j

. (19)

To the end, the derivative of Equation (17) is achieved as

∂Fi,v
∂πk,c

=

(
Ẑi,v − Zi,v

)
Wk,v

C

C∑
c=1

∑J
j=1Qi,k, je

αQi,k, j

∑J
j=1 e

αQi,k, j

, (20)

where Qi,k, j is introduced in Equation (3).

3.5.3 HyperplaneWeight Gradient. For achieving the hyperplane weightW of classifier to min-

imize the objective function, we also use gradient descent to update it by fixing the EEG shapelets

S and the EEG channel contributions π . Then Equation (9) degenerates to Equation (21):

min
S,π ,W

F =
N∑
i=1

V∑
v=1

L
(
Zi , Ẑi

)
+
λW
2
‖W ‖2. (21)

Along with
∂L(Zi,v ,Ẑi,v )

∂Ẑi,v
, given in Equation (12), the derivative of Equation (21) with respect to

W is then defined in Equation (22):

∂Fi,v
∂Wk,v

=
∂L
(
Zi,v , Ẑi,v

)
∂Ẑi,v

∂Ẑi,v
∂Wk,v

+ λWWk,v =
(
Ẑi,v − Zi,v

)
Di,k + λWWk,v . (22)

And especially,

∂Fi,v
∂W0,v

= Ẑi,v − Zi,v . (23)

4 THE ALGORITHM

We first introduce the proposed algorithm StEEGCS for EEG channel selection in this section,

followed by its convergence analysis, model initialization, and computational complexity analysis.

4.1 StEEGCS

The algorithm we call StEEGCS is a gradient descent algorithm that iteratively learns the distinct

EEG shapelets S , channel contributions π , and linear hyperplane weightsW based on the gradient

descent technique. Finally, according to channel contributions π , csel ∈ Rsel with top-sel πc con-

tribution channels for K shapelets can be selected out. Algorithm 1 shows the details, in which S ,
π , andW are updated iteratively under the learning rate η. Finally, sel channels csel are selected
according to the top-sel channel contributions π .
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ALGORITHM 1: StEEGCS for EEG channel selection

Input: EEG data EEE = {eee1,eee2, . . . ,eeen }N×C×M ; Labels of EEGYYY ∈ RN×V ; Number of shapelets K ;
Length of shapelet lmin < l < L; Weight parameters λW and λS ; Learning rate η; Precision
control parameter α ; Kernel parameter σ and maximum iteration Iiter ; Number of selected

channel sel .
Output: Best shapelets SSS ∈ RK×V×L ; Channel contributions πππ ∈ RK×C ; Hyperplane weights

WWW ∈ RK×V ; biasWWW 0 ∈ RV ; Selected EEG channel cccsel ∈ RK×sel .
1 Initialize SSS0, πππ 0,WWW 0;

2 for t = 1 to Iiter do
3 for i = 1 to N do

4 for k = 1 to K do

5 Calculate Di,k with Equations (2) and (3);

6 end

7 for v = 1 to V do

8 Calculate Yi,v and Ẑi,v with Equations (5) and (6), respectively;

9 for k = 1 to K do

10 for c = 1 to C do

11 for l = 1 to L do

12 Sk,c,l ← Sk,c,l − η ∂Fi,v
∂Sk,c,l

with Equations (11)–(16);

13 πk,c ← πk,c − η ∂Fi,v
∂πk,c

with Equation (20);

14 end

15 end

16 Wk,v ←Wk,v − η ∂Fi,v
∂Wk,v

with Equation (22);

17 end

18 W0,v ←W0,v − η ∂Fi,v
∂W0,v

with Equation (23);

19 cccsel ← channel indexes of top-sel πππ for K shapelets;

20 end

21 end

22 end

23 return SSS , πππ ,WWW ,WWW 0, cccsel ;

4.2 Convergence Analysis

Algorithm 1 selects sel EEG channels with top-sel contributions forK shapelets by simultaneously

learning shapelets S , channel contributions π , and linear hyperplane W based on the gradient

descent strategy. As the objective function is non-convex, it, in the gradient descent strategy, just

can converge into a local optima under two parameters that interferes with each other, such as

the learning rate η and the maximum iteration Iiter . A proper setting of η and Iiter can obtain a

good convergence in a relatively short time. In particular, a larger η can help algorithm operate

less iterations to minimize the objective function (see Equation (9)), but it likely deteriorates the

convergence of the algorithm. On the contrary, if the algorithm aims to converge with a smaller

learning rate η, then it needs more iterations. Consequently, it is also a trade-off between learning

rate and maximum iteration to set for the algorithm. But considering the acceptable time cost to

converge, we recommend setting η = 0.01 and Iiter ≤ 100 in the article.

4.3 Model Initialization

The objective function (i.e., Equation (9)) is non-convex, so the gradient descent-based algorithm in

which the variables of shapelets S , channel contributions π , and linear hyperplaneW are required

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 58. Publication date: August 2020.



58:10 C. Dai et al.

to learn simultaneously just converges to the local optima. The gradient descent strategy to solely

learn each of them cannot guarantee the global optima of objective function, but it is also widely

applied to solve non-convex problems as a trade-off technique. In practice, the performance of

gradient descent-based algorithm is significantly influenced by initializations of its parameters that

we are addressing in the section. As the patterns of every EEG class can be represented by their

centroid, for S0, it is initialized by the k-means centroid that contains same length of segments

from EEG data. Then, according to the initialization of shapelets S , the original EEG data can

be represented by the shapelet-transformed matrix D. To initialize channel contribution π 0, we

transformed the average distances between shapelets and EEG channel segment to its initialization

contributions with sigmoid function, i.e., π 0 (i ) = sigmoid( 1
K

∑K
k=1 Di,k ) (where i denotes the ith

EEG channel, and Di,k refers to Equation (2)). AndW 0 is simply randomly initialized close to 0

based on a normal distribution.

4.4 Computational Complexity

As shown in Algorithm 1, StEEGCS solves the problem forn EEG trials inmaximum iterations Iiter .
In each iteration, it mainly takesO (nckl2) for calculating D;O (nvk ) forY , Ẑ , andW , respectively;

O (nvkc2l3 + nvck3l3 + nvckl2) for S ;O (nvkc2l2) forπ , andO (nv ) forW 0, respectively, wherek de-
notes the number of shapelets that needs to learn; v denotes the number of EEG classes; c denotes
the number of EEG channels; l is the maximum length of shapelets. In sum, the total time complex-

ity of StEEGCS is O (Iiter (max{nckl2,nvk,nvkc2l3 + nvck3l3 + nvkcl2,nvkc2l2,nv})). Since com-

monly k, c � l , the computational complexity of StEEGCS is O (Iiter (nvkc
2l3 + nvck3l3)).

5 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we first introduce the details of EEG datasets, evaluation methodology, and baseline

methods. Then, we carry out a detailed experimentation to compare the proposed StEEGCS with

state-of-the-art EEG channel selection approaches on several real-world EEG datasets.

5.1 EEG Datasets

Ten EEG datasets are used to evaluate the efficacy of the proposed method, including the slow

cortical potentials (SCPs), motor imagery EEG, and wrist movement EEG data. All the EEG

datasets and their detailed descriptions are publicly available as online archives at http://www.bbci.

etition/ii/ (Dataset:II) and http://www.bbci.de/competition/iv/ (Ddataset:IV), respectively. To eval-

uate EEG channel selection methods with respect to classification accuracy, we randomly divide

the original EEG dataset into two parts: training dataset and testing one. All the selection methods

are operated on the training data and evaluated with the testing one. The detailed descriptions of

each EEG dataset are shown in Table 1.

5.2 Baselines

To further establish the superiority of StEEGCS for EEG channel selection, we compare it to several

classic and state-of-the-art approaches, such as CSP [51], RCSP [12], SCSP [4], IMOCS [19], and

CCSE [53].

CSP: Common spatial pattern operates on a covariance matrix between EEG channels. In detail,

it is effective in discriminating two classes of EEG data by maximizing the variance of one class

while minimizing the variance of the other class. CSP-based channel selection method selects EEG

channels based on CSP coefficients, i.e., channels corresponding tomaximal CSP vector coefficients

are selected as the optimal EEG channels.
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Table 1. EEG Datasets

Dataset Description
Number × Channel × Sample
(training data:testing data) Classes

Ia SCPs from one healthy subject
268 × 6 × 896
(200:68)

2

Ib SCPs from one ALS patient
200 × 7 × 1152
(120:80)

2

IV_1_calib_1a
IV_1_calib_1b
IV_1_calib_1f

Motor imagery of 2-class of left hand,
right hand, or foot from three healthy
subjects

200× 59 × 800
(120:80)

2

IV_2a_s1
IV_2a_s2
IV_2a_s3

Motor imagery of left hand right hand,
both feet, and tongue from three healthy
subjects

288 × 22 × 313
(200:88)

4

IV_3_s1
IV_3_s2

Wrist movement to left, right, forward,
backward from two healthy subjects

160 × 10 × 400
(120:40)

4

RCSP: Regularized common spatial pattern-based algorithm selects EEG channels by inducing

the sparsity in the spatial filters, which actually uses 1-norm regularization. The solution of RCSP

is sparser than conventional CSP.

SCSP: Sparse common spatial pattern-based algorithm selects EEG channels by scattering the

common spatial filters within a constraint of classification accuracy. In detail, SCSP scatters the

CSP spatial filters to emphasize on a limited number of EEG channels with high variances between

classes, and to discard the rest of the channels with low variances.

IMOCS: Iterative multi-objective optimization for channel selection selects EEG channels by

first initializing a reference candidate solution and subsequently finding a set of most relevant

channels in an iterative manner.

CCSE: This method selects EEG channels via using correlation coefficient of spectral entropy

(CCSE). EEG channels are selected based on the ranking of correlation coefficient, in a way that the

spectral entropy of each channel across all frequencies is considered by taking sum of the squared

correlation coefficient.

Honestly, there are many classifiers for EEG time-series classification, including Deep Neural

Networks (DNNs)-based classifier [13], COTE [5], HIVE-COTE [34], St-TSC [33], RPCD [46], and

SAX-SEQL [39], but we just apply SVM classifier in the article, since (1) SVM is the most widely

used and promising classifier for EEG time-series classification; (2) as introduced in References

[9, 10] that SVM also performs as well as such classifiers as COTE, St-TSC, RPCD, and SAX-SEQL

on EEG classification; (3) besides, SVM also achieves the highest accuracy for EEG classification

compared with Fisher linear discriminant analysis (FLDA), Generalized Andersonąŕs Task linear

classifier (GAT), Linear Discriminant Analysis (LDA) [44]. Therefore, SVM classifier with LIBSVM

toolbox [8] was used in EEG classification step to assist to analyze the efficacy of channel selection

approaches. Additionally, SVM is operated 10 times on testing dataset and their average is reported

as the final classification accuracy.

For baseline methods, the parameters are tuned according to their original articles. For StEEGCS

learning shapelets, we set a minimum length of shapelets lmin = 10 to learn, and other shapelets

are expanded to different lengths by a scaler r ∈ Z+, i.e., {lmin , . . . , rlmin }. Besides, the weight

parameters λW and λS are searched in {10−4, 10−2, 100, 102, 104}, and the learning rate η is set as

η = 0.01.
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Fig. 2. Shapelets with different lengths learned from every EEG class.
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Fig. 3. Channel weights with shapelet lengths and numbers on II_Ia.

Fig. 4. Channel weights with shapelet lengths and numbers on II_Ib.

5.3 Sensitivity Analysis

The StEEGCS is a shapelet-transformed EEG channel selection and the selected channels seem to

be influenced by channel contribution (i.e., channelweights), shapelet length, and shapelet number.

Hence, we respectively discuss their impacts in this section.

5.3.1 Impact of Shapelets on Channel Weights. We analyze the impact of shapelet length and

shapelet number on StEEGCS. We first show shapelets learned from each class of EEG datasets,

see Figure 2. Actually, we just show one EEG shapelet of each class in Figure 2, and it seems
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Fig. 5. Channel weights with shapelet lengths and numbers on IV_1_calib_1a.

Fig. 6. Channel weights with shapelet lengths and numbers on IV_1_calib_1b.

to indicate that shapelet length of 30 contains better distinguishing patterns compared to other

shapelet lengths such as 10, 40, 60, and so on. In detail, a shorter shapelet (e.g., 10 or 20) cannot

clearly distinguish the patterns of different EEG channels, so it probably does not select the most

representative channels for EEG classification. Meanwhile, a longer shapelet probably contains

patterns that can be presented by a relatively shorter shapelet, such as 120 to 60, 60 to 30, so
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Fig. 7. Channel weights with shapelet lengths and numbers on IV_1_calib_1f.

Fig. 8. Channel weights with shapelet lengths and numbers on IV_2a_s1.

it likely contains redundant patterns of EEG data. Besides, as introduced above, we only analyze

shapelet lengths of 10 at least while 50 or 120 at most for corresponding EEG datasets in the article.

Moreover, shapelet numbers are affected by shapelet length as well as the sample length of

each EEG channel. For example, learning too many shapelets (more than 5) with length of 120,

it may require more than 600 samples for each EEG channel, otherwise the learned shapelets are

not distinct with each other, since they probably overlap with each other or contain too many
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Fig. 9. Channel weights with shapelet lengths and numbers on IV_2a_s2.

Fig. 10. Channel weights with shapelet lengths and numbers on IV_2a_s3.

redundant/common shapelet segments; if learning too many shapelets with length of 10, then

it can be transformed to learn a smaller amount of shapelets with longer shapelets such as 20,

30, or 60, and so on, since a longer shapelet probably contains several shorter shapelets. In other

words, learning too many shapelets no matter longer or shorter may be not good for learning

EEG channel weights and maybe finally degrade EEG classification. A larger number of shapelets

learned to select EEG channels seem to provide more redundant EEG patterns for classifier, and

it also costs more time. Consequently, we, according to the length of EEG shapelets and the
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Fig. 11. Channel weights with shapelet lengths and numbers on IV_3_s1.

Fig. 12. Channel weights with shapelet lengths and numbers on IV_3_s2.

corresponding channel sample, we just discuss the impact of shapelet numbers from 1 to 5 on

EEG channel selection and classification.

StEEGCS selects EEG channel based on channel contributions (i.e., channel weights). In other

words, EEG channel weights are actually determined by EEG shapelets. Therefore, we analyze the

impact of shapelets on EEG channel weights, including shapelet length and shapelet number. The

results on 10 EEG datasets are shown in Figures 3–12, respectively. Generally, using 3 shapelets,

the discriminations among EEG channel weights are relatively more obvious than other numbers

of shapelets. Correspondingly, Figure 13 briefly illustrates the relationship between EEG channel
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Fig. 13. EEG channel weights with respect to different shapelet lengths (shapelet number: 3).

weights and shapelet lengths when fixing the number of learned shapelets as 3, and it shows that

shapelet length of 30 reflects relatively more distinguishing EEG channel weights for StEEGCS.

As we stated before, a large number of shapelets seem to contain redundant or less discriminative

patterns in EEG channel data while small numbers of shapelets may contain incomplete patterns

of EEG channel signals. Hence, both of the two situations result in relatively lower discrimination

among EEG channel weights, which probably influences the performance of channel selection and

classification. Similarly, short or long shapelets probably result in relatively lower discrimination

of EEG channel weights as well, since short shapelets (e.g., 10) may contain incomplete patterns of

EEG channel data while long shapelets (e.g., 90, 120), on the contrary, may contain redundant or

less discriminative EEG patterns. Consequently, according to the results in Figures 3–13, setting

EEG shapelet number as 3 and shapelet length as 30 for StEEGCS can get relatively the highest

discrimination EEG channel weights, which is beneficial to achieve best EEG classification.

5.3.2 Impact of Shapelets on Classification Performance. Wediscuss the impact of shapelet num-

ber and shapelet length on EEG classification performance, along with the number of selected EEG

channels. The impact of shapelet number (fixing shapelet length as 30 according the discussion in

Section 5.3.1) and shapelet length (fixing shapelet number as 3 according the discussion in Sec-

tion 5.3.1) is displayed in Figures 14 and 15, respectively, both of which indicate that classification

performance is improved with a fewer EEG channels selected by StEEGCS, especially when the

number of selected EEG channels is 2, 3, or 4.

As illustrated in Figures 14 and 15, classification accuracies achieved with 3 shapelets of 30 are

relatively the highest in all conditions, in accord with the discussion in Section 5.3.1. In other

words, StEEGCS with a relatively small number of shapelets (i.e., 3) in a moderate length (i.e., 30)

can select the most relevant EEG channels for SVM classifier to yield the highest classification

accuracy.
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Fig. 14. Classification with respect to selected EEG channels and shapelet numbers (shapelet length: 30).

5.4 Performance Comparison with Baselines

We, in this section, analyze the efficacy of our method StEEGCS with respect to classification ac-

curacy by comparing it to baselines on 10 EEG datasets. As we concluded in Section 5.3 that 3

shapelets with length of 30 can select the most relevant EEG channels and yield the best classifica-

tion performance with the selected EEG channels, we set shapelet length: 30 and shapelet number;

3 for StEEGCS.

5.4.1 Comparison with Non-selected EEG Channels. With SVM, we first analyze the impact of

StEEGCS selected EEG channels on EEG classification accuracy. The results, with 3 shapelets of

length 30, are shown in Figure 16, which indicates that the SVM-based classification accuracies

on all EEG datasets increase generally along with the number of selected EEG channels decreases.

Besides, Table 2 also shows that EEG classification accuracy with StEEGCS selected channels is
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Fig. 15. Classification with respect to selected EEG channels and shapelet lengths (shapelet number: 3).

greatly improved by 9.5% at least for all EEG datasets, compared to those with non-selection chan-

nels (i.e., all channels). StEEGCS aims to search distinct EEG shapelets that represent the original

EEG data, to provide more informative EEG patterns for SVM classifier. In other words, as em-

bedded with logistic loss, shapelet-transformed StEEGCS not only reduces redundancy of EEG

data but also strengthens important patterns for classifier modeling. Meanwhile, as the number of

selected EEG channels decreases, the efficiency of SVM classifier is correspondingly significantly

improved, compared to non-selection EEG channels, see Figure 17.

5.4.2 Comparison with EEG Channel Selection Baselines. To further establish the efficacy of

StEEGCS, we, with SVM classifier, compare it to other EEG channel selection methods such as

CSP, RCSP, SCSP, IMOCS, and CCSE. As applied to 10 EEG datasets, the classification results are
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Fig. 16. Classification accuracy with StEEGCS selected EEG channels (shapelet number: 3; shapelet: 30).

Table 2. Classification Accuracy Improvement (Best Classification with Selected EEG

Channels vs. Non-selection)

EEG dataset
Non-selection

(# of all channels)
Selected

(# of selected channels)
Improvement (%)

II_Ia 80.88 (6) 91.18 (4) 12.73

II_Ib 65 (7) 78.75 (2) 21.15

IV_1_calib_1a 72.5 (59) 86.25 (2) 18.97

IV_1_calib_1b 65 (59) 71.25 (16) 9.62

IV_1_calib_1f 68.75 (59) 80 (16) 16.36

IV_2a_s1 62.27 (22) 75.91 (6, 10, 12) 21.90

IV_2a_s2 67.95 (22) 78.18 (11) 15.06

IV_2a_s3 59.55 (22) 74.32 (8, 9) 24.80

IV_3_s1 57.5 (10) 70 (3) 21.74

IV_3_s2 65 (10) 77.5 (7) 19.23

shown in Figure 18. The results of StEEGCS are achieved with shapelet length of 30 and shapelet

number of 3 (the explanation is in detail introduced in Section 5.3). The results clearly demon-

strate the superiority of StEEGCS for EEG channel selection, since the classification accuracy with

StEEGCS selected channels is generally higher than those of other channel selection methods. Ad-

ditionally, we also compare their averages and standard deviations of all classification accuracies
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Fig. 17. Classification efficiency with EEG channels selected by StEEGCS (shapelet number: 3; shapelet

length: 30).

Table 3. Classification Accuracy in All Cases with Different Selected Numbers of Channels (Average ±
Standard Deviation) (the Best Results Are Highlighted in Boldface)

EEG dataset CSP RCSP SCSP IMOCS CCSE StEEGCS

II_Ia 81.62 ± 3.03 83.68 ± 3.27 85.80 ± 3.89 84.92 ± 2.12 84.82 ± 1.72 89.71 ± 1.04

II_Ib 64.98 ± 2.22 68.33 ± 2.66 69.51 ± 3.14 68.71 ± 2.39 68.22 ± 2.50 73.96 ± 3.74

IV_1_calib_1a 73.88 ± 1.37 75.77 ± 1.84 76.83 ± 2.19 76.59 ± 2.51 76.49 ± 2.71 78.66 ± 3.97

IV_1_calib_1b 65.43 ± 0.57 66.33 ± 0.58 66.95 ± 0.66 66.30 ± 0.89 66.73 ± 0.81 67.95 ± 1.44

IV_1_calib_1f 69.83 ± 1.76 70.67 ± 1.84 72.11 ± 2.60 71.50 ± 2.29 71.58 ± 2.53 73.48 ± 3.83

IV_2a_s1 66.03 ± 1.06 67.40 ± 1.86 68.71 ± 2.53 68.15 ± 2.25 68.59 ± 2.59 70.88 ± 3.52

IV_2a_s2 69.36 ± 0.68 70.62 ± 1.11 71.28 ± 0.87 71.11 ± 1.43 71.25 ± 1.00 73.80 ± 1.21

IV_2a_s3 61.88 ± 1.57 63.14 ± 1.65 64.24 ± 2.18 64.00 ± 2.35 64.58 ± 2.17 67.82 ± 3.06

IV_3_s1 58.95 ± 1.63 59.99 ± 1.96 60.93 ± 2.24 60.97 ± 2.96 61.13 ± 2.78 64.17 ± 4.38

IV_3_s2 67.00 ± 1.73 68.40 ± 1.84 69.07 ± 2.29 69.24 ± 2.44 69.46 ± 2.39 72.08 ± 3.68

achieved with different selected EEG channels on each EEG dataset, i.e., the averages and stan-

dard deviations of all classification for each channel selection method. The results are shown in

Table 3, which demonstrates that on all EEG datasets, StEEGCS assists SVM classifier to achieve

the best averaged classification accuracy. Moreover, the best and worst classification accuracies

with correspondingly selected EEG channels are also displayed in Table 4, which also indicates
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Fig. 18. Classification results of different EEG channel selection methods (shapelet number: 3; shapelet

length: 30).

that StEEGCS is the best method for EEG channel selection, compared to different baselines, since

it yields the highest classification accuracy on all EEG datasets no matter in best or worst situa-

tion. Besides, we also analyze the significance of StEEGCS over baselines for EEG channel selection

by using one-tailed t-test (α = 0.05) on their classification accuracy; see Table 5. The p-values in
Table 5 demonstrate the classification performance achieved by StEEGCS is significantly different

to those baseline methods on most of EEG datasets, especially some of which are extremely sig-

nificantly different. In other words, Table 5 indicates that StEEGCS outperforms baselines for EEG

channel selection with respect to classification accuracy.

In addition, we also accordingly compare the execution time of EEG channel selection ap-

proaches, and the result is illustrated in Figure 19. As Figure 19 indicates, StEEGCS costs the most

for EEG channel selection onmost of EEG datasets. As introduced in Section 4.4, the computational

complexity of StEEGCS is O (Iiter (nvkc
2l3 + nvck3l3)), and it shows that the time consumption

of StEEGCS is mainly determined by optimal shapelet learning, which requires many iterations

(or time) to find the optimal length and number of shapelets. But StEEGCS has competitive EEG

channel selection efficiency to IMOCS and CCSE. Anyway, considering its superior classification

performance, StEEGCS’s execution time for EEG channel selection is acceptable.

6 CONCLUSION AND FUTURE WORKS

Multi-channel EEG is widely applied in Brain-Computer Interfaces (BCIs), but analyzing EEG

signals with too many channels likely results in computational cost and inconvenience for BCI

applications. EEG channel selection is a way to deal with the issue. Besides, as many studies
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Table 4. The Best and Worst Classification Accuracy with Corresponding Selected Number of EEG

Channels (the Corresponding Best Results Are Highlighted in Boldface)

EEG dataset
Classification
(# of selected
channels)

CSP RCSP SCSP IMOCS CCSE StEEGCS

II_Ia best 83.71 (4) 86.76 (3) 89.92 (3) 86.41 (4) 86.85 (4) 91.18 (4)

worst 76.34 (1) 78.54 (1) 80.22 (1) 81.23 (1) 82.14 (1) 88.24 (1)

II_Ib best 67.92 (3) 72.45 (3) 74.21 (3) 72.72 (3) 73.04 (3) 78.75 (2)

worst 62.22 (1) 65.27 (6) 65.87 (6) 66.22 (6) 66.48 (6) 67.50 (6)

IV_1_calib_1a best 76.72 (10) 79.15 (10) 80.23 (10) 80.74 (10) 81.35 (2) 86.25 (2)

worst 71.77 (55) 73.22 (55) 73.96 (35) 72.86 (40) 73.27 (40) 73.75 (45,55)

IV_1_calib_1b best 66.42 (35) 67.52 (35) 68.35 (3) 67.41 (3) 67.76 (1) 71.25 (16)

worst 64.65 (50) 65.19 (50) 65.45 (55) 64.78 (55) 64.94 (50) 66.25 (40,50)

IV_1_calib_1f best 72.76 (15) 73.97 (15) 75.34 (15) 74.45 (15) 76.09 (15) 80 (16)

worst 67.21 (45) 67.78 (45) 68.10 (45) 68.28 (45) 67.96 (45) 68.75 (45,50)

IV_2a_s1 best 67.22 (10) 70.54 (10) 72.87 (10) 71.77 (10) 72.06 (10) 75.91 (6,10,12)

worst 63.88 (20) 64.23 (20) 65.07 (20) 64.59 (20) 64.19 (20) 64.55 (20)

IV_2a_s2 best 70.31 (3) 71.77 (3) 72.21 (3) 72.65 (10) 72.45 (5) 78.18 (11)

worst 68.72 (1) 68.43 (20) 69.87 (1) 68.97 (20) 69.56 (15) 72.5 (15,20)

IV_2a_s3 best 64.23 (10) 65.37 (10) 67.11 (10) 67.28 (5) 67.87 (5) 74.32 (8,9)

worst 59.92 (1) 60.78 (1) 60.98 (20) 60.77 (20) 61.54 (20) 62.95 (20)

IV_3_s1 best 60.71 (5) 62.36 (3) 63.17 (3) 64.16 (3) 63.89 (3) 70 (3)

worst 56.78 (1) 57.83 (1) 58.21 (1) 57.98 (1) 58.45 (1) 62.5 (1,2)

IV_3_s2 best 68.77 (3) 70.56 (7) 72.17 (7) 71.89 (7) 71.56 (7) 77.5 (7)

worst 64.23 (1) 65.18 (1) 65.56 (1) 64.89 (1) 65.34 (1) 67.5 (1)

Fig. 19. Execution time on EEG channel selection (shapelet number: 3; shapelet length: 30).

reported before, EEG channel selection can not only improve the BCI performance by removing

irrelevant or redundant EEG channels but also enhance convenience for BCI applications with less

EEG channels. Hence, we proposed an EEG shapelet-transformed channel selection approach that

we call StEEGCS, which first used EEG shapelets to represent original EEG data, and subsequently
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Table 5. Significant Difference (p-value) of StEEGCS Comparing to Baselines with

Classification Accuracy (Significant ∗ : p ≤ 0.05; Very Significant ∗∗ : p ≤ 0.01;

Extremely Significant ∗ ∗ ∗ : p ≤ 0.001)

StEEGCS (vs.) CSP RCSP SCSP IMOCS CCSE

II_Ia ∗∗ ∗∗ ∗ ∗∗ ∗ ∗ ∗
II_Ib ∗ ∗ ∗ ∗∗ ∗ ∗∗ ∗∗

IV_1_calib_1a ∗ ∗ ∗ ∗ − (p = 0.059) ∗ ∗
IV_1_calib_1b ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
IV_1_calib_1f ∗∗ ∗ − (p = 0.114) ∗ − (p = 0.058)
IV_2a_s1 ∗∗ ∗ − (p = 0.088) ∗ − (p = 0.078)
IV_2a_s2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗
IV_2a_s3 ∗ ∗ ∗ ∗∗ ∗ ∗ ∗
IV_3_s1 ∗ ∗ − (p = 0.075) − (p = 0.086) − (p = 0.094)
IV_3_s2 ∗∗ ∗ − (p = 0.063) − (p = 0.074) − (p = 0.088)

applied gradient descent technique to learn distinct EEG shapelets, hyperplane, and EEG channel

weights in a non-convex logistic loss minimization function. Finally, the most relevant EEG

channels to classification performance are selected for SVM classifier. The experimental results on

several real-world EEG datasets demonstrated that StEEGCS improves the classification accuracy

and efficiency by selecting a small amount of EEG channels and outperforms the classic and

state-of-the-art EEG channel selection methods with respect to SVM classification performance.

In the article, gradient descent is adopted in StEEGCS that probably leads to local optima, so

other techniques such as heuristic approach should be considered to solve the non-convex min-

imization objective function of logistic loss for StEEGCS. Besides, as many promising classifiers

emerged, it would be interesting to apply new classifiers, such as DNNs, HIVE-COTE, and so on,

mentioned in Section 5.2, to analyze the universality of StEEGCS in future work. Additionally, we

also intend to exploit more efficient EEG shapelet transforming/learning/selection approaches to

extract distinct and informative EEG shapelets in the future, such as References [11, 25, 32, 42],

and so on.
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